Pyrolysis Paths of Polybutadiene Depending on Pyrolysis Temperature

  • Choi Sung-Seen (Department of Applied Chemistry, Sejong University) ;
  • Han Dong-Hun (Department of Applied Chemistry, Sejong University)
  • Published : 2006.06.01

Abstract

Polybutadiene (BR) was pyrolyzed at $540-860^{\circ}C$ and the effect of pyrolysis temperature on variations in the relative abundance of the major pyrolysis products (C4-, C5-, C6-, C7-, and C8-species) was investigated. Formation of the C4-, C5-, C6-, and C7-species competed with that of the C8-species. Relative intensity of the C8-species decreased with increasing pyrolysis temperature, while that of the C5-, C6-, and C7-species increased. Pyrolysis paths were became more complicated with increasing pyrolysis temperature. We suggested the operation of double bond migration and succeeding rearrangements for the formation of the C5- and C7-species and various rearrangements, including a double bond, for the formation of the C6-species at high temperature. The activation energies for the pyrolysis product ratios of(C5+C6+C7)/C4 and C8/C4 were used to explain the competition reactions to form the pyrolysis products.

Keywords

References

  1. S.-S. Choi, J. Anal. Appl. Pyrolysis, 57, 249 (2001) https://doi.org/10.1016/S0165-2370(00)00106-6
  2. E. A. Radell and H. C. Strutz, Anal. Chem., 31, 1890 (1959) https://doi.org/10.1021/ac60155a067
  3. R. S. Lehrle and J. C. Robb, Nature, 183, 1671 (1959) https://doi.org/10.1038/1831671a0
  4. S. B. Martin, J. Chromatogr., 2, 272 (1959) https://doi.org/10.1016/S0021-9673(01)86293-2
  5. S. H. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang, Macromol. Res. 13, 212 (2005) https://doi.org/10.1007/BF03219054
  6. M. J. Hackathorn and M. J. Brock, Rubber Chem. Technol., 45, 1295 (1972) https://doi.org/10.5254/1.3544739
  7. R. P. Lattimer, R. E. Harris, C. K. Rhee, and H. R. Schulten, Rubber Chem. Technol., 61, 639 (1988) https://doi.org/10.5254/1.3536210
  8. H. R. Schulten, B. Plage, and R. P. Lattimer, Rubber Chem. Technol., 62, 698 (1989) https://doi.org/10.5254/1.3536269
  9. D. Braun and E. Canji, Angew Makromol. Chem., 29/30, 491 (1973)
  10. M. Phair and T. Wampler, in Proceedings of the Rubber Division 150th Meeting, American Chemical Society, Paper No. 69 (1996)
  11. G. N. Ghebremeskel and C. Hendrix, in Proceedings of the Rubber Division 152nd Meeting, American Chemical Society, Paper No. 72 (1997)
  12. J. C. W. Chien and J. K. Y. Kiang, Eur. Polym. J., 15, 1059 (1979) https://doi.org/10.1016/0014-3057(79)90146-0
  13. G. N. Ghebremeskel, J. K. Sekinger, J. L. Hoffpaiur, and C. Hendrix, Rubber Chem. Technol., 69, 874 (1996) https://doi.org/10.5254/1.3538409
  14. R. P. Lattimer, J. Anal. Appl. Pyrolysis, 39, 115 (1997) https://doi.org/10.1016/S0165-2370(96)00966-7
  15. J. Hacaloglu, T. Ersen, N. Ertugrul, M. M. Fares, and S. Suzer, Eur. Polym. J., 33, 199 (1997) https://doi.org/10.1016/S0014-3057(96)00068-7
  16. J. Hacaloglu and T. Ersen, Rapid Commun. Mass Spectrom., 12, 1793 (1998) https://doi.org/10.1002/(SICI)1097-0231(19981130)12:22<1793::AID-RCM353>3.0.CO;2-E
  17. S.-S. Choi, Bull. Kor. Chem. Soc., 20, 1348 (1999)
  18. F. Chen and J. Qian, Fuel Proc. Technol., 67, 53 (2000)
  19. W. Kaminsky and C. Mennerich, J. Anal. Appl. Pyrolysis, 58-59, 803 (2001) https://doi.org/10.1016/S0165-2370(00)00129-7
  20. S. Ucar, S. Karagoz, A. R. Ozkan, and J. Yanik, Fuel, 84, 1884 (2005) https://doi.org/10.1016/j.fuel.2005.04.002
  21. R. F. C. Brown, Pyrolytic Methods in Organic Chemistry, Academic Press, New York, 1980