• Title/Summary/Keyword: Polymer membrane

Search Result 1,522, Processing Time 0.024 seconds

Mass Transfer Modelling of Asymmetric Membrane Formation by Phase Inversion

  • 김제영;이환광;백기전;김성철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.81-82
    • /
    • 1997
  • 1. Introduction : The growth of membrane science was initiated by the invention of asymmetric membrane which can be formed by the technique known as phase inversion. The basic procedure of phase inversion involves casting a thin film of polymer solution onto a suitable substrate followed by immersion in a coagulation bath (quench step). Therefore, events occurring during the quench period, at which time solvent-nonsolvent exchange and eventual polymer precipitation take place, can play a controlling role in the determination of ultimate membrane structure.

  • PDF

Calix[6]arene Bearing Carboxylic Acid and Amide Groups in Polymeric CTA Membrane

  • Kim, Jong-Seung;Lee, Soo-Heon;Yu, Sang-Hyeok;Cho, Moon-Hwan;Kim, Dong-Won;Kwon, Seon-Gil;Lee, Eil-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1085-1088
    • /
    • 2002
  • Calix[6]arene having both carboxylic acid (1,3,5-) and carboxamide (2,4,6-) in an alternative way was synthesized. Transport rates of alkali and alkaline-earth metal ions were tested in bulk liquid membrane and polymer inclusion membrane. Ba2+ ion was found to give the highest transport rate among tested metal ions in both BLM and PIM systems. In PIM system, high durability (longer than 30 days) of the membrane was observed.

Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells (고온 구동형 고분자 전해질 막 연료전지용 폴리벤즈이미다졸계 고분자 전해질 막의 개발 동향)

  • HyeonGyeong, Lee;Gabin, Lee;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.442-455
    • /
    • 2022
  • High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temperatures even doped by ion-conducting materials for the development of high-performance and durable HT-PEMFC systems. A number of studies have been conducted to develop polybenzimidazole (PBI)-based PEMs for applications in HT-PEMFC due to their high interaction with doped ion-conducting materials and outstanding thermomechanical stability under high-temperature operation. This review focused on the development of PBI-based PEMs showing high performance and durability. Firstly, the characteristic behavior of PBI-based PEMs doped with various ion-conducting materials including phosphoric acid was systematically investigated. And then, a comparison of the physicochemical properties of the PEMs according to the different membrane manufacturing processes was conducted. Secondly, the incorporation of porous polytetrafluoroethylene substrate and/or inorganic composites to PBI matrix to improve the membrane performances was studied. Finally, the construction of cross-linked structures into PBI-based PEM systems by polymer blending method was introduced to improve the PEM properties.

Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 화학적 내구성 평가시간 단축)

  • Oh, Sohyeong;Cho, Wonjin;Lim, Daehyeon;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.333-338
    • /
    • 2021
  • The durability of the PEMFC stack for large commercial vehicles should be more than 5 times that for passenger vehicles. If the Chemical Accelerated Stress Test (AST) of PEMFC(Proton Exchange Membrane Fuel Cells) membrane for passenger cars is applied as it is for large commercial vehicles, there is a problem that the AST time becomes more than 2,500 hours. In order to shorten the AST time of DOE (Department of Energy), the chemical durability of the polymer membrane was evaluated using oxygen instead of air as a cathode gas. In this study, Nafion XL was used as a polymer membrane to evaluate accelerated durability under OCV, 90?, RH 30%, H2/(air or oxygen) conditions. Among the DOE membrane durability target criteria, the decrease rate of short resistance was the fastest. By using oxygen instead of air, the degradation rate of the polymer membrane was accelerated while being less affected by electrode deterioration, reducing the polymer membrane durability evaluation time to less than half.

The Spreading Characteristics of the (Polymer/18-Crown-6) Composite Solution for Water Cast-Membranes ((Polymer/18-Crown-6)복합박막 제조용액의 수면전개 특성)

  • 남석태;최호상;최성부;김병식
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.265-272
    • /
    • 1996
  • The (polymer/carrier) composite membranes for separating the metallic ion have been prepared by the water cast-method. The morphology of these membranes was affected by the physical properties of the spreading solution. The surface tension of the (polymer/18-crown-6) composite solution was decreased with increasing the concentration of 18-crown-6 compound and the surface tension of polymer solution decreased the following order PVC>PS>CA. The viscosity of CA solution decreased with increasing the contents of the 18-crown-6 compound, but PVC and PS solutions showed no significance changes according as the concentration of 18-crown-6 compound. In the composite solutions, the spreading ability was improved by' the cyclic 18-crown-6 molecules which acted as an electric buffer and diminished the intermolecular force between the polymer chains. The (polymer/18-crown-6) composite membrane was more uniform than that of the mono polymer membrane on the coagulation state of polymer, and the top and bottom sides of membrane showed also the more smooth structure according as the concentration increment of 18-crown-6 molecule.

  • PDF

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF

Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

  • Lee, Sang Man;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.510-514
    • /
    • 2013
  • The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by $^2H$ nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-$^2H$ director of $^2H_2O$ in polymer electrolyte membrane was employed to extract the structural information from the $^2H$ NMR peak splitting data. The dependence of $^2H$ NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state.

Polymer Materials for Polymer Electrolyte Fuel Cells: Sulfonated Poly(ether sulfone)s for Fuel Cell Membranes

  • Kim, H.J.;Lee, S.Y.;Cho, E.;Ha, H.Y.;Oh, I.H.;Lim, T.H.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.185-185
    • /
    • 2006
  • The performances of proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using $H_2/air$ gases as fuel and oxidant. A current density of $730\;mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$. Pt-Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced $83\;mW/cm^2$ of maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.

  • PDF

A Study on the Change of Mechanical Property According to the Aging of Polymer Electrolyte Membrane (고분자전해질막의 노후화에 따른 기계적 특성 변화에 관한 연구)

  • KIM, SEUNGHWAN;EO, JUNWOO;SEO, YOUNGJIN;HWANG, CHULMIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.176-182
    • /
    • 2022
  • Since the various characteristics of the polymer electrolyte membrane are not clearly identified, it is difficult to predict and design applications for various conditions. In this study, as a previous study on the aging of the polymer electrolyte membrane, a study was conducted on the change of mechanical properties according to the aging of the polymer electrolyte membrane. Through the tensile test of Nafion 117, the mechanical properties change due to aging was confirmed. As a result of the tensile test, it was confirmed that the aged Nafion 117 had reduced tensile strength. Through DSC measurement, aged Nafion confirmed that the glass transition temperature and enthalpy change were low, which is thought to be the effect of molecular motion and transition due to the lapse of time. The effect is thought to cause a difference in the amount of change in enthalpy, resulting in a difference in mechanical properties during tension.