DOI QR코드

DOI QR Code

Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane

PEMFC 고분자막의 화학적 내구성 평가시간 단축

  • Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Cho, Wonjin (Department of Chemical Engineering, Sunchon National University) ;
  • Lim, Daehyeon (Department of Chemical Engineering, Sunchon National University) ;
  • Yoo, Donggeun (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • 오소형 (순천대학교 화학공학과) ;
  • 조원진 (순천대학교 화학공학과) ;
  • 임대현 (순천대학교 화학공학과) ;
  • 유동근 (순천대학교 화학공학과) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2021.05.04
  • Accepted : 2021.05.25
  • Published : 2021.08.01

Abstract

The durability of the PEMFC stack for large commercial vehicles should be more than 5 times that for passenger vehicles. If the Chemical Accelerated Stress Test (AST) of PEMFC(Proton Exchange Membrane Fuel Cells) membrane for passenger cars is applied as it is for large commercial vehicles, there is a problem that the AST time becomes more than 2,500 hours. In order to shorten the AST time of DOE (Department of Energy), the chemical durability of the polymer membrane was evaluated using oxygen instead of air as a cathode gas. In this study, Nafion XL was used as a polymer membrane to evaluate accelerated durability under OCV, 90?, RH 30%, H2/(air or oxygen) conditions. Among the DOE membrane durability target criteria, the decrease rate of short resistance was the fastest. By using oxygen instead of air, the degradation rate of the polymer membrane was accelerated while being less affected by electrode deterioration, reducing the polymer membrane durability evaluation time to less than half.

대형 상용차용 PEMFC 스택 내구성은 승용차용보다 5배 이상 되어야 한다. 승용차용 PEMFC 고분자막의 화학적 가속 내구성 평가(AST)를 대형 상용차용에 그대로 적용하면 AST 시간이 2,500시간 이상이 되는 문제점이 있다. DOE(Department of Energy)의 AST 시간을 단축시키기 위해 Cathode 가스로 공기대신 산소를 사용하여 고분자막의 화학적 내구성을 평가하였다. 본 연구에서는 Nafion XL을 고분자막으로 사용해 OCV, 90 ℃, RH 30%, H2 (Anode), 공기 또는 산소조건으로 가속 내구성을 평가하였다. DOE 내구 목표 기준 중 Short 저항 감소가 제일 빨리 나타났다. 공기대신 산소를 사용함으로써 전극 열화의 영향을 적게 받으면서, 고분자막의 열화 속도를 가속화시켜 고분자막 내구성 평가시간을 절반 이하로 단축시켰다.

Keywords

Acknowledgement

이 논문은 2020년 순천대학교 학술연구비(과제번호 : 2020-0194) 공모과제로 연구되었음.

References

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X. and Tu, Z., "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  2. Department of Energy, https://wwwenergygov/(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://wwwmostgovcn/eng(2016).
  6. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  7. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S., "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc. 140(10), 2872-2877(1993). https://doi.org/10.1149/1.2220925
  8. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  9. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  10. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  11. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005). https://doi.org/10.1149/1.1830355
  12. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131(1-2), 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  13. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  14. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  15. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, "Doe Cell Component Accelerated Stress Test Protocols For Pem Fuel Cells."
  16. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  17. Sompalli, B., Brian, A., Wenbin, G. and Hubert, A. G., "Membrane Degradation of Catalyst Layer Edges in PEMFC MEAs," J. Electrochem. Soc., 154(12), B1349-B1357(2007). https://doi.org/10.1149/1.2789791
  18. Mench, M. M., Emin, C. K. and Veziroglu, T. N., Polymer Electrolyte Fuel Cell Degradation, Academic Press, Oxford, Waltham, MA, 64-77(2012).
  19. Oh, S. H., Gwon, J. H., Lim, D. H. and Park, K. P., "Study on the Short Resistance and Shorting of Membrane of PEMFC," Korean. Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  20. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6