• Title/Summary/Keyword: Polymer foil

Search Result 32, Processing Time 0.029 seconds

Silicon Thin-Film Transistors on Flexible Polymer Foil Substrates

  • Cheng, I-Chun;Chen, Jian Z.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1455-1458
    • /
    • 2008
  • Amorphous silicon (a-Si:H) thin-film transistors (TFTs) are fabricated on flexible organic polymer foil substrates. As-fabricated performance, electrical bias-stability at elevated temperatures, electrical response under mechanical flexing, and prolonged mechanical stability of the TFTs are studied. TFTs made on plastic at ultra low process temperatures of $150^{\circ}C$ show initial electrical performance like TFTs made on glass but large gate-bias stress instability. An abnormal saturation of the instability against operation temperature is observed.

  • PDF

The Effect of Functionalized Organosilane Coupling Agent on the Adhesion Properties of 2 Layer Flexible Copper Clad Laminate (기능성 실란커플링제가 2-FCCL의 접착특성에 미치는 영향)

  • Park, Jin-Young;Lim, Jae-Phil;Kim, Yong-Seok;Jung, Hyun-Min;Lee, Jae-Heung;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.525-529
    • /
    • 2009
  • In order to manufacture 2-layer flexible copper clad laminate (FCCL) s having the excellent performance high adhesion properties between copper foil and polyimide film are required. Silane coupling agents with specific functional groups as an adhesion promoter are generally used to enhance the adhesion. In our study, we synthesized a novel silane coupling agent for increasing the adhesive property between copper layer and polyimide layer. The surface morphology of rolled copper foil, as a function of the concentrations of the coated silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by the surface morphology and we confirmed that the novel silane coupling agent affects adhesive properties in FCCL with two types of poly (amic acid)s.

Study of Peel Strength Property of Aluminum/Organic Composite (알루미늄/유기물 복합재료의 Peel 강도 특성에 대한 연구)

  • Kim, Jun-Young;Yoo, Myong-Jae;Kim, Seoung-Taek;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.217-218
    • /
    • 2007
  • Aluminum 분말과 고분자를 혼합하여 고분자-금속 복합재료(polymer-metal composite)를 만들어 copper foil과 기판의 접착력을 평가하였다. Tape casting 방법을 이용하여 sheet 만들고 vacuum lamination으로 PCB(Printed Circuit Board)기판을 제조한 후 포토공정으로 peel strength pattern을 형성하였으며, 본 연구에서는 최적의 aluminum 조건을 찾기 위하여 압력, 온도, copper foil의 표면 상태와 silane 표면 코팅에 따른 aluminum-polymer복합재료의 peel strength의 변화를 확인하였다. 최적의 조건은 silane 표면 코팅 처리를 한 aluminum 분말로 $210^{\circ}C$에서 $9.7kg/cm^2$ 압력으로 matte면의 돌기 크기가 크며, 응집이 잘 되어있는 copper foil을 사용하여 13.89N의 우수한 peel strength를 구현 할 수 있었다.

  • PDF

Analysis of Blanking Process for Aluminium Foil by FEM (유한요소법에 의한 초박판 알루미늄 블랭킹 공정해석)

  • Lee, S.K.;Kim, J.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.498-501
    • /
    • 2001
  • Blanking is one of the most frequently used processes in sheet metal forming. In this paper, attention is paid to the blanking simulation of aluminium foil with $20{\mu}m$ thickness which is used an anode in lithium-ion polymer battery. In order to study the shearing mechanism for the metallic foil, finite element analysis with Crockroft and Latham fracture criterion was performed. The objective of the present work is to evolve a methodology to obtain the optimum punch-die clearance for a given aluminium foil by the simulation of the blanking process using a general purpose FEM code.

  • PDF

Study of Adhesion according to Various Surface Treatments for Lithium Ion Secondary Battery Pouch Film (다양한 표면처리에 따른 리튬이온 이차전지용 파우치 필름을 위한 접착성에 관한 연구)

  • Kim, Do Hyun;Bae, Sung Woo;Cho, Jung Min;Yoo, Min Sook;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.231-234
    • /
    • 2016
  • Pouch film is manufactured by laminating aluminum foil, polyamide film and polypropylene film with an adhesive or extrusion resin. However, a surface treatment is required for the aluminum because bonding does not occur easily between the aluminum foil and the polymer film. Thus, for this study, surface treatment experiments were performed in order to confirm the effect on adhesion strength. First, a variety of surface treatment solutions were coated on aluminum foil, and contact angle and surface morphology analysis was carried out for the surface-treated aluminum. For lamination of the surface-treated aluminum foil with polyamide film, a polyurethane base adhesive was prepared for the adhesive strength test specimens. The adhesive strength between the aluminum foil and the polyamide film of the resulting specimens was measured (UTM). With such an experiment, it was possible to evaluate the effect on adhesive strength of the various surface treatments.

Design of Hard Coating Resin for In-mold Decoration (IMD) Foil and Effects of EB Irradiation on IMD Foil Layers (In-mold Decoration(IMD) 포일용 경질 코팅 수지 설계 및 전자빔 조사가 IMD 포일 구성층에 미치는 영향)

  • Sim, Hyun-Seog;Kim, Geon-Seok;Shin, Ji-Hee;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.268-274
    • /
    • 2012
  • The silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate (${\gamma}$-MPTS), was grafted on the surface of alumina nanoparticles. We used the surface modified nanoparticles in the hard coating layer for in-mold decoration (IMD) foils and evaluated the coating properties such as hardness and anti-abrasion property. The effects of electron beam (EB) irradiation on color layer and anchor layer of IMD foils were observed through the difference in color and the cross-cut tape test, respectively. Also, cure kinetics as studied quantitatively under various reaction temperatures by analysis of surface properties and Fourier transform infrared (FTIR) spectroscopy. From these results, we constructed database for the commercial exploitation of EB curing system.

BCB Polymer Dielectrics for Electronic Packaging and Build-up Board Applications

  • Im, Jang-hi;Phil-Garrou;Jeff-Yang;Kaoru-Ohba;Masahiko-Kohno;Eugene-Chuang;Jung, Moon-Soo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.19-25
    • /
    • 2000
  • Dielectric polymer films produced from benzocyclobutene (BCB) formulations (CYCLOTENE* family resins) are known to possess many desirable properties for microelectronic applications; for example, low dielectric constant and dissipation factor, low moisture absorption, rapid curing on hot plate without reaction by-products, minimum shrinkage in curing process, and no Cu migration issues. Recently, BCB-based products for thick film applications have been developed, which exhibited excellent dissipation factor and dielectric constant well into the GHz range, 0.002 and 2.50, respectively. Derived from these properties, the applications are developed in: bumping/wafer level packaging, Ga/As chip ILD, optical waveguide, flat panel display, and lately in BCB-coated Cu foil for build-up board. In this paper, we review the relevant properties of BCB, then the application areas in bumping/wafer level packaging and BCB-coated Cu foil for build-up board.

  • PDF

Thin Film Energy Storage Device with Spray-Coated Sliver Paste Current Collector

  • Yoon, Seong Man;Jang, Yunseok;Jo, Jeongdai;Go, Jeung Sang
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.874-879
    • /
    • 2017
  • This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass-manufacturable spray-coating technology enables the fabrication of two different half-cell electric double layer capacitors (EDLC) with a spray-coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half-cell EDLC with the spray-coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half-cell EDLC with the spray-coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from -0.5 V to 0.5 V, the spray-coated thin film energy storage device exhibits a better performance.

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF