• Title/Summary/Keyword: Polymer electrolytes

Search Result 209, Processing Time 0.025 seconds

The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery (리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향)

  • Park, Soo-Gil;Park, Jong-Eun;Lee, Hong-Ki;Lee, Ju-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF

Electrolytes - Quality at Point of Use

  • Heider U.;Jungnitz M.;Oesten R.
    • 한국전기화학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.153-166
    • /
    • 1998
  • Lithium ion Batteries commercially available since the early nineties in Japan are going to be more and more important for portable electronic devices and even EV applications. Today several companies around the world are working hard to join to market for Lithium secondary batteries. Based on the growing interest for commercial use of batteries also the materials have to be reviewed in order to meet large scale production needs. The requirements especially for electrolytes for lithium batteries are extremely high. The solvents and the lithium salts should be of highest purity. So the supply of these chemicals including packaging, transportation and storage but also the handling in production are critical items in this field. Frolic impurities are very critical for LiPF6 based electrolytes. The influence of water is tremendous. But also the other protic impurities like alcoholes are playing an Important role for the electrolyte quality. The reaction of these species with LiPF6 leads to formation of HF which further reacts with cathode materials (spinel) and anode. To understand the role of the protic impurities more clearly the electrolyte was doped with such compounds and was analyzed for protic impurities and HF. These results which directly show the relation between impurities and quality will be presented and discussed. In addition several investigations on different packaging materials as well as methods to analyze and handle the sensititive material will be addressed. These questions which are only partly discussed in literature so far and never been investigated systematically cover some of the key parameters for understanding of the battery chemicals. This investigation and understanding however is of major importance for scientist and engineers in the field of Lithium ion and Lithium polymer batteries.

  • PDF

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Kim, Kyung-Chan;Roh, Sae-Weon;Ryu, Sang-Woog
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

Silica Filler Addition Effect on the Ion Conductivity of PEO Composite Electrolytes Blended with Poly(ethylene imine) (폴리에틸렌 이민과 혼합된 PEO 복합체 전해질의 이온 전도도에 미치는 실리카 필러 첨가 효과)

  • Kim, Juhyun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.465-469
    • /
    • 2011
  • In this study, poly(ethyleneoxide) and poly(ethylene imine) polymer blends containing fumed silica fillers were studied in order to enhance the ion conductivity and interfacial properties. Lithium perchlorate ($LiClO_4$) as a salt, and silica($SiO_2$) as the inorganic filler were introduced into the polymer composite electrolyte composites and the composites were examined to evaluate their ionic conductivity for a possibility test of electrolyte application. As the diameter of semicircle in an impedance test became smaller, ionic conductivity of composite electrolytes had been enhanced by addition of 20 wt% silica filler. However, the conductivity was not greatly changed over 20 wt% content because the silica was sufficiently saturated in the polymer electrolytes. Diffraction peaks of PEO became weaker with the addition of inorganic fillers using XRD analysis. It showed that a crystallinity was proportionally reduced by increasing filler contents. The morphology of composite electrolyte films has been investigated by SEM. The heterogeneous morphology which silica was evenly dispersed by the strong adhesion of PEI was shown at higher contents of silica.

A study on the long-term stability of dye-sensitized solar cells with different electrolyte systems

  • Bang, So-Yeon;Gang, Tae-Yeon;Lee, Do-Gwon;Kim, Gyeong-Gon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.320-320
    • /
    • 2010
  • The dye-sensitized solar cells (DSSCs) have achieved so far the highest validated efficiency over 11%. However, the cells with the best performance utilize volatile solvent as a electrolyte, which can cause some practical limitations for the long-term operation. This is one of the most substantial problems to be resolved for the commercialization of DSSCs. In order to improve the long-term stability, many research groups have reported new electrolyte system, to replace the liquid type electrolyte by non-volatile ones. In this work, we studied long-term stability of the DSSCs with various types of electrolytes such as (PVDF HFP) based polymer, eutectic melts of ionic liquids, and liquid based solvent. The cells with various electrolytes have been exposed to the condition under thermal stress and illumination over 1000 hours. We will report the change of photovoltaic properties with time and investigate the degradation mechanism with the impedance spectroscopic analysis.

  • PDF

Electrolyte-gated Transistors for the Next-generation Smart Electronics (차세대 스마트 전자를 위한 전기화학 트랜지스터)

  • Kwon, Hyeok-jin;Kim, Se Hyun
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • In this report, we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for various printed electronics. EGTs, employing a high capacitance electrolyte as gate dielectric layer in transistors, exhibits increasing of drive current, lowering operation voltage, and new transistor architectures. While the use of electrolytes in electronics goes back to the early days of silicon transistors, the new printable, fast-responsive polymer electrolytes are expanding their range of applications from printable and flexible digital circuits to various neuromorphic devices. This report introduces the structure and operating mechanism of EGT and reviews key developments in electrolyte materials used in printed electronics. Additionally, we will look at various applications with EGTs that are currently underway.

Synthesis of Poly(MMA-co-PEGMA) Electrolytes by Grafting-onto Method and Effect of Composition on Ionic Conductivities (Grafting-onto법에 의한 poly(MMA-co-PEGMA) 전해질의 합성과 이온전도도에 대한 조성의 영향)

  • Lee, Ju-Hyung;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.198-203
    • /
    • 2013
  • Copolymer consisted of MMA and tBMA was synthesized by radical polymerization and poly(MMA-co-MA) was prepared by selective hydrolysis of tert-butyl group. The obtained polymer was coupled with epoxy functionalized PEO of various molecular weight to synthesize poly(MMA-co-PEGMA) with different side chain length. The AC-impedance measurement shows $1.88{\times}10^{-6}Scm^{-1}$ of room temperature ionic conductivity from 48mol% of MMA while $5.11{\times}10^{-8}Scm^{-1}$ was observed in 82mol% sample. In addition, there was an effect of PEGMA molecular weight on ionic conductivity possibly due to the steric hindrance in grafting-onto coupling reaction. Finally, the polymer electrolytes shows electrochemical stability up to 6V at room temperature.

The Conductivity Properties of Poly(ethylene oxide) Polymer Electrolyte as a Function of Temperature, Kinds of Lithium Salt and Plasticizer Addition (Poly(ethylene oxide) 고분자 전해질의 온도, Li 염의 종류 및 가소제 첨가에 따른 전도도 특성)

  • Kim, J.U.;Jin, B.S.;Moon, S.I.;Gu, H.B.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1229-1232
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. This paper describes the effects of lithium salts, plasticizer addition and temperature dependence of conductivity of PEO electrolytes. Polyethylene oxide(PEO) based polymer electrolyte films were prepared by solution casting an acetonitrile solution of preweighed PEO and Li salt. After solvent evaporation, the electrolyte films were vacuum-dried at $60^{\circ}C$ for 48h, the thickness of the films were $90{\sim}110{\mu}m$. The conductivity properties of prepared PEO electrolytes are summarized as follows. PEO electrolyte complexed with $LiClO_4$ shows the better conductivity of the others. $PEO-LiClO_4$ electrolyte when $EO/Li^+$ ratio is 8, showed the best conductivity. Optimum operating temperature of PEO electrolyte is $60^{\circ}C$. By adding propylene carbonate and ethylene carbonate to $PEO-LiClO_4$ electrolyte, its conductivity was higher than $PEO-LiClO_4$ without those. Also $PEO_8LiClO_4$ electrolyte remains static up to 4.5V vs. $Li/Li^+$.

  • PDF

Cross-linking of Acid-Base Composite Solid Polymer Electrolyte Membranes with PEEK and PSf (산-염기형 PEEK와 PSf를 이용한 고체 고분자전해질 복합막의 가교화)

  • Jang, In-Young;Jang, Doo-Young;Kwon, Oh-Hwan;Kim, Kyoung-Eon;Hwang, Gab-Jin;Sim, Kyu-Sung;Bae, Ki-Kwang;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 2006
  • Hydrogen as new energy sources is highly efficient and have very low environmental emissions. The proton exchange membrane fuel cell (PEMFC) is an emerging technology that can meet these demands. Therefore, the preparation of stable polymeric membranes with good proton conductivity and durability are very important for hydrogen production via water electrolysis with PEM at medium temperature above $80^{\circ}C$. Currently Nafion of Dupont and Aciflex of Asahi, etc., solid polymer electrolytes of perfluorosulfonic acid membrane, are the best performing commercially available polymer electrolytes. However, these membrane have several flaws including its high cost, and its limited operational temperature above $80^{\circ}C$. Because of this, significant research efforts have been devoted to the development of newer and cheaper membranes. In order to make up for the weak points and to improve the mechanical characteristics with cross -linking, acid-base complexes were prepared by the combination PSf-co-PPSS-$NH_2$ with PEEK-$SO_3H$. The results showed that the proton conductivity decreased in 17.6% and 40% but tensile strength increased in 78% and 98%, about $20.65\;{\times}\;10^6N/m^2$, in comparison with SBPSf/HPA and SPEEK/HPA complex membrane.

Conductivity properties of ion conducting polymer electrolyte based on poly(ethylene oxide) (이온전도성 poly(ethylene oxide)고분자전해질의 전도특성)

  • 김종욱;문성인;진봉수;구할본;윤문수
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.487-494
    • /
    • 1995
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. We investigated the effects of lithium salts, plasticizer addition, temperature dependence of conductivity and electrochemical stability window of polyethylene oxide(PEO) electrolytes. PEO electrolyte completed with LiCIO$\_$4/ shows the better conductivity than the others. PEO-LiCIO$\_$4/ electrolyte, when EO/Li$\^$+/ ratio is 8, showed adequate conductivity around room temperature. By adding propylene carbonate and ethylene carbonate to PEO-LiCIO$\_$4/ electrolyte, its conductivity was higher than that of PEO-LiCIO$\_$4/ without those. Also PEO$\_$8/LiCIO$\_$4/ electrolyte remains stable up to 4.5V vs. Li/Li.

  • PDF