Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.4.198

Synthesis of Poly(MMA-co-PEGMA) Electrolytes by Grafting-onto Method and Effect of Composition on Ionic Conductivities  

Lee, Ju-Hyung (Department of Engineering Chemistry, Chungbuk National University)
Ryu, Sang-Woog (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.4, 2013 , pp. 198-203 More about this Journal
Abstract
Copolymer consisted of MMA and tBMA was synthesized by radical polymerization and poly(MMA-co-MA) was prepared by selective hydrolysis of tert-butyl group. The obtained polymer was coupled with epoxy functionalized PEO of various molecular weight to synthesize poly(MMA-co-PEGMA) with different side chain length. The AC-impedance measurement shows $1.88{\times}10^{-6}Scm^{-1}$ of room temperature ionic conductivity from 48mol% of MMA while $5.11{\times}10^{-8}Scm^{-1}$ was observed in 82mol% sample. In addition, there was an effect of PEGMA molecular weight on ionic conductivity possibly due to the steric hindrance in grafting-onto coupling reaction. Finally, the polymer electrolytes shows electrochemical stability up to 6V at room temperature.
Keywords
Copolymer; Composition; Ionic conductivity; Lithium-ion secondary battery; Solid polymer electrolyte;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. MacCallum, and C. Vincent, 'Polymer Electrolyte Reviews-1' 69, Elsevier Applied Science, New York (1987).
2 G.-A. Nazri, and G. Pistoia, 'Lithium Batteries Science and Technology' 574, Kluwer Academic Publishers, New York (2004).
3 M. Yosho, R. Brodd, and A. Kozawa, 'Lithium-ion Batteries' 413, Springer, New York (2009).
4 J. Saunier, F. Alloin, J. Sanchez, and G. Caillon, 'Thin and flexible lithium-ion batteries: investigation of polymer electrolytes' J. Power Sources, 119-121, 454 (2003).   DOI   ScienceOn
5 F. Dias, L. Plomp, and J. Veldhuis, 'Trends in polymer electrolytes for secondary lithium batteries' J. Power Sources, 88, 169 (2000).   DOI   ScienceOn
6 D. Kim, J. Song, and J. Park, 'Synthesis, characterization and electrical properties of the novel polymer electrolytes based on polyesters containing ethylene oxide moiety' Electrochimica Acta, 40, 1697 (1995).   DOI   ScienceOn
7 J. Acosta, and E. Morales, 'Structural, morphological and electrical characterization of polymer electrolytes based on PEO-PPO blends' Solid State Ionics, 85, 85 (1996).   DOI   ScienceOn
8 A. Nishimoto, M. Watanabe, Y. Ikeda, and S. Kohjiya, 'High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers' Electrochimica Acta, 43, 1177 (1998).   DOI   ScienceOn
9 Y. Ikeda, Y. Wada, Y. Matoba, S. Murakami, and S. Kohjiya, 'Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte' Electrochimica Acta, 45, 1167 (2000).   DOI   ScienceOn
10 P. Jannasch, 'Ion conducting electrolytes based on aggregating comblike poly(propylene oxide)' Polymer, 42, 8629 (2001).   DOI   ScienceOn
11 E. Gomez, A. Panday, E. Feng, V. Chen, G. Stone, A. Minor, C. Kisielowski, K. Downing, O. Borodin, G. Smith, and N. Balsara, 'Effect of ion distribution on conductivity of block copolymer electrolytes' Nano Letters, 9, 1212(2009).   DOI   ScienceOn
12 W. Young, and T. Epps, III, 'Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations' Macromolecules, 45, 4689(2012).   DOI   ScienceOn
13 D. Kim, Y. Kim, J. Kim, and S. Moon, 'Electrical properties of the plasticized polymer electrolytes based on arcylonitrile-methyl methacrylate copolymer' Solid State Ionics, 106, 329 (1998).   DOI   ScienceOn
14 Z. Chen, L. Zhang, R. West, and K. Amine, 'Gel electrolyte for lithium-ion batteries' Electrochimica Acta, 53, 3262 (2008).   DOI   ScienceOn
15 T. Niitani, M. Shimada K. Kawamura, and K. Kanamura, 'Characteristics of new-type solid polymer electrolyte controlling nano-structure' J. Power Sources, 146, 386 (2005).   DOI   ScienceOn
16 D. Rahlwes, J. Roovers, and S. Bywater, 'Synthesis and characterization of poly(styrene-g-isoprene) copolymers' Macromolecules, 10, 604 (1977).   DOI
17 K. Kim, and S. Ryu, 'Synthesis and electrochemical properties of solid polymer electrolytes using $BF_3LiMA$ as monomer' J. Kor. Electrochem. Soc., 14, 208 (2011).   DOI   ScienceOn
18 K. Kim, and S. Ryu, 'Synthesis of self-doped poly(PEGMA-co-$BF_3LiMA$) electrolytes and effect of PEGMA molecular weight on ionic conductivities' J. Kor. Electrochem. Soc., 15, 230 (2012).   DOI   ScienceOn
19 E. Ruckenstein, and H. Zhang, 'Grafting by in situ coupling of epoxy group of a living copolymer with an anionic living polymer' J. Polym. Sci.: Part A: Polym. Chem., 37, 105 (1999).   DOI   ScienceOn
20 M. Takaki, R. Asami, and M. Mizuno, 'Anionic grafting reaction of living polystyrene with poly(p-vinylstyrene oxide) and its styrene copolymer' Macromolecules, 10, 845 (1977).   DOI
21 S. Ryu, and A. Hirao, 'Anionic synthesis of well-defined poly(m-halomethylstyrene)s and branched polymers via graft-onto methodology' Macromolecules, 33, 4765 (2000).   DOI   ScienceOn