Electrolyte-gated Transistors for the Next-generation Smart Electronics

차세대 스마트 전자를 위한 전기화학 트랜지스터

  • 권혁진 (포항공과대학교화학공학과) ;
  • 김세현 (영남대학교화학공학부)
  • Published : 2020.04.30

Abstract

In this report, we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for various printed electronics. EGTs, employing a high capacitance electrolyte as gate dielectric layer in transistors, exhibits increasing of drive current, lowering operation voltage, and new transistor architectures. While the use of electrolytes in electronics goes back to the early days of silicon transistors, the new printable, fast-responsive polymer electrolytes are expanding their range of applications from printable and flexible digital circuits to various neuromorphic devices. This report introduces the structure and operating mechanism of EGT and reviews key developments in electrolyte materials used in printed electronics. Additionally, we will look at various applications with EGTs that are currently underway.

Keywords

References

  1. 유현균, 박귀일, 이건재, 웨어러블/플렉시블 전자 소재 연구동향, 재료마당, 28, 4-15 (2015).
  2. 양용석, 유인규, 윤호경, 홍성훈, 박주현, 장문규, 이진호, 인쇄전자 기술 및 동향, 미래 부품소재 기술 특집, 28, 1-11 (2013).
  3. 정부연, 웨어러블 디바이스 시장 현황과 전망, 정보통신방송정책, 30, 1-7 (2018).
  4. 박정용, 박재수, 인쇄전자 산업시장의 현황과 전망, 한국정보통신학회 논문지, 17, 263-267 (2012).
  5. J. Tate, J. A. Rogers, C. D. W. Jones, B. Vyas, D. W. Murphy, W. Li, Z. Bao, R. E. Slusher, A. Dodabalapur, and H. E. Katz, Anodization and microcontact printing on electroless silver: Solution-based fabrication procedures for low-voltage electronic systems with organic active components, Langmuir, 16, 6054-6060 (2000). https://doi.org/10.1021/la991646b
  6. S. Chao and M. S. Wrighton, Solid-state microelectrochemistry: Electrical characteristics of a solid-state microelectrochemical transistor based on poly(3-methylthiophene), J. Am. Chem. Soc., 109, 2197-2199 (1987). https://doi.org/10.1021/ja00241a057
  7. S. Chao and M. S. Wrighton, Characterization of a solid-state polyaniline-based transistor: Watervapor dependent characteristics of a device employing a poly(vinylalcohol)/phosphoric acid solid-state electrolyte, J. Am. Chem. Soc., 109, 6627-6631 (1987). https://doi.org/10.1021/ja00256a011
  8. D. Ofer, R. M. Crooks, and M. S. Wrighton, Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: Finite windows of high conductivity, J. Am. Chem. Soc., 112, 7869-7879 (1990). https://doi.org/10.1021/ja00178a004
  9. M. Berggren and A. Richter-Dahlfors, Organic bioelectronics, Adv. Mater., 19, 3201-3213 (2007). https://doi.org/10.1002/adma.200700419
  10. P. Andersson, D. Nilsson, P. O. Svensson, M. X. Chem, A. Malmstorm, T. Remonen, T. Kugler, and M. Berggren, Active matrix displays basedon all-organic electrochemical smart pixels printed on paper, Adv. Mater., 14, 1460-1464 (2002). https://doi.org/10.1002/1521-4095(20021016)14:20<1460::AID-ADMA1460>3.0.CO;2-S
  11. J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology, Sens. Actuator B-Chem., 57, 56-62 (1999). https://doi.org/10.1016/S0925-4005(99)00135-5
  12. T. G. Backlund, H. G. O. Sandberg, R. Osterbacka, and H. Stubb, Current modulation of a hygroscopic insulator organic field-effect transistor, Appl. Phys. Lett., 85, 3887-3889 (2004). https://doi.org/10.1063/1.1811798
  13. J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H. Shimotani, and Y. Iwasa, Liquid-gated interface superconductivity on an atomically flat film, Nat. Mater., 9, 125-128 (2010). https://doi.org/10.1038/nmat2587
  14. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids, Adv. Funct. Mater., 19, 1046-1053 (2009). https://doi.org/10.1002/adfm.200801633
  15. M. J. Panzer, C. R. Newman, and C. D. Frisbie, Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric, Appl. Phys. Lett., 86, 103503 (2005). https://doi.org/10.1063/1.1880434
  16. J. Takeya, K. Yamada, K. Hara, K. Shigeto, K. Tsukaegoshi, S. Ikenhara, and Y. Aoyagi, High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte, Appl. Phys. Lett., 88, 112102 (2006). https://doi.org/10.1063/1.2186513
  17. T. A. Skotheim and O. Inganas, Polymer solid electrolyte photoelectrochemical cells with n-Si-polypyrrole photoelectrodes, J. Electrochem. Soc., 132, 2116-2120 (1985). https://doi.org/10.1149/1.2114301
  18. T. A. Skotheim and O. Inganas, Charge transfer between polypyrrole coated n-Si electrodes and solid polymer electrolytes, Mol. Cryst. Liquid Cryst., 121, 285-289 (1985). https://doi.org/10.1080/00268948508074876
  19. J. Lee, L. G. Kaake, J. H. Cho, X. Y. Zhu, T. P. Lodge, and C. D. Frisbie, Ion gel-gated polymer thin-film transistors: Operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability, J. Phys. Chem. C, 113, 8972-8981 (2009). https://doi.org/10.1021/jp901426e
  20. D. Ofer and M. S. Wrighton, Potential dependence of the conductivity of poly(3-methylthiophene) in liquid sulfur dioxide/electrolyte: A finite potential window of high conductivity, J. Am. Chem. Soc., 110, 4467-4468 (1988). https://doi.org/10.1021/ja00221a087
  21. H. S. White, G. P. Kittlesen, and M. S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor, J. Am. Chem. Soc., 106, 5375-5377 (1985). https://doi.org/10.1021/ja00330a070
  22. J. Pu, Y. Yomogida, K. Liu, L. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion Gel dielectrics, Nano Lett., 12, 4013-4017 (2012). https://doi.org/10.1021/nl301335q
  23. M, Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, M. C. Hersam, and C. D. Frisbie, Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks, ACS Nano, 4, 4388-4395 (2010). https://doi.org/10.1021/nn100966s
  24. M. Ha, J. -W. T. Seo, P. L. Prabhumirashi, W. Zhang, M. L. Geier, M. J. Renn, C. H. Kim, M. C. Hersam, and C. D. Frisbie, Aerosol jet printed, low voltage, electrolye gated carbon nanotube ring oscillators with sub-5μs stage delays, Nano Lett., 13, 954-960 (2013). https://doi.org/10.1021/nl3038773
  25. P. A. Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri, R. Forchhimer, G. Gustafsson, and M. Berggren, All-printed large-scale integrated circuits based on organic electrochemical transistors, Nat. Commun., 10, 5053 (2019). https://doi.org/10.1038/s41467-019-13079-4
  26. A. Campana, T. Cramer, D. T. Simon, M. Berggren, and F. Biscarini, Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold, Adv. Mater., 26, 3874-3878 (2014). https://doi.org/10.1002/adma.201400263
  27. P. Lin, F. Yan, J. Yu, H. L. W. Chan, and M. Yang, The application of organic electrochemical transistorsin cell-based biosensors, Adv. Mater., 22, 3655-3660 (2010). https://doi.org/10.1002/adma.201000971
  28. L. H. Jimison, s. A. Tria, D. Khodagholy, M. Gurfinkel, E. Lanzarini, A. Hama, G. G. Malliaras, and R. M. Owens, Measurement of barrier tissue integrity with an organic electrochemical transistor, Adv. Mater., 24, 5919-5923 (2012). https://doi.org/10.1002/adma.201202612
  29. A. Romeo, G. Tarabella, P. D'Angelo, C. Caffara, D. Cretella, R. Alfieri, P. G. Petronini, and S. Iannotta, Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system, Biosens. Bioelectron., 68, 791-797 (2015). https://doi.org/10.1016/j.bios.2015.01.073
  30. H. Tang, F. Yan, P. Lin, J. Xu, and H. L. W. Chan, Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials, Adv. Funct. Mater., 21, 2264-2272 (2011). https://doi.org/10.1002/adfm.201002117
  31. P. Gkoupidenis, N. Schaefer, B. Garlan, and G. G. Malliaras, Neuromorphic functions in PEDOT : PSS organic electrochemical transistors, Adv. Mater., 27, 7176-7180 (2015). https://doi.org/10.1002/adma.201503674
  32. P. Gkoupidenis, D. A. Koutsouras, T. Lonjaret, J. A. Firfield, and G. G. Malliaras, Orientation selectivity in a multi-gated organic electrochemical transistor, Sci. Rep., 6, 27007 (2016). https://doi.org/10.1038/srep27007
  33. P. Gkoupidenis, D. A. Koutsouras, and G. G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating, Nat. Commun., 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
  34. A. Cifarelli, T. Berzina, A. Parisini, V. Erokhin, and S. Iannotta, Polysaccarides-based gels and solid-state electronic devices with memresistive properties: Synergy between polyaniline electrochemistry and biology, AIP Adv., 6, 111302 (2016). https://doi.org/10.1063/1.4966559
  35. B. C. Das, R. G. Pillai, Y. Wu, and R. L. McCreery, Redox-gated three-terminal organic memory devices: Effect of composition and environment on performance, ACS Appl. Mater. Interfaces, 5, 11052-11058 (2013). https://doi.org/10.1021/am4032828
  36. B. C. Das, B. Szeto, D. D. James, Y. Wu, and R. L. McCreery, Ion transport and switching speed in redox-gated 3-terminal organic memory devices, J. Electrochem. Soc., 161, H831-H838 (2014). https://doi.org/10.1149/2.0831412jes
  37. A. V. Emelyanov, D. A. Lapkin, V. A. Demin, V. V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A. N. Korovin, S. Iannotta, P. K. Kashkarov, and M. V. Kovalchuk, First steps towards the realization of a double layer perceptron based on organic memristive devicesm, AIP Adv., 6, 111301 (2016). https://doi.org/10.1063/1.4966257