• Title/Summary/Keyword: Polymer Sensor

Search Result 429, Processing Time 0.025 seconds

Improvement of PLED Efficiency by Post-annealing Process

  • Seo, Jun-Seon;Kim, Jae-Hyun;Hong, Seok-Min;Kang, Byoung-Ho;Kim, Do-Eok;Kim, Hak-Rin;Kang, Shin-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.846-849
    • /
    • 2009
  • In this study, we manufactured polymer-LED using light emitting copolymer as the active layer. After cathode layer deposition, we did post-annealing at $150^{\circ}C$ during 10 min in $N_2$ glove box. Then, we confirmed that the efficiency of the device was significantly enhanced by post annealing process. Its value was increased from 0.18(cd/A) to 1.32(cd/A), approximately 7 times. This phenomenon is a result of improved stability between polymer and metal cathode for injection of electrons as the contact density increases.

  • PDF

Investigation on Hermeticity of Liquid Crystal Polymer Package for MEMS Based Safety Device (MEMS 기반 안전 소자에 대한 액정 폴리머 패키지의 밀폐도 연구)

  • Choi, Jinnil;Kim, Yong-Kook;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.287-290
    • /
    • 2015
  • Liquid crystal polymer (LCP) is a thermoplastic polymer with superior mechanical and thermal properties. In addition, its characteristics include very low water absorption rate and possibility to apply bonding process under low temperature. In this study, LCP is utilized as a packaging material for a microelectronic system (MEMS) based safety device with suggestion of a low temperature packaging process. Highly sensitive and stable capacitive type humidity sensor is fabricated to investigate hermeticity of the packaged MEMS device.

An electronic auscultation system design using a polymer based adherent differential output sensor (Polymer based adherent differentil output sensor를 이용한 전자 청진 시스템 설계)

  • 한철규;고성택;최민주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.185-188
    • /
    • 2000
  • Heart sound contains rich information regarding the dynamics of the heart and the auscultation has been a first choice of routine procedures for diagnosis of the heart. However, heart sounds captured using a conventional stethoscope are not often loud or clear enough for doctors to precisely classify their characteristics, especially, under the noisy environments of the hospital. A simple auscultation device that removed shortcomings of the conventional stethoscope was constructed in the study. The device employed a polymer based adherent differential output sensor which was on contact with skin through a coupling medium and appropriated electronic circuits for signal amplification and conditioning. An ordinary headphone is taken to hear the captured heart sounds and the volume can be adjusted to hear well. It is also possible that the device sends the captured heart sound signals to a PC where the signals are further processed and viualized.

  • PDF

Discriminant Analysis of Marketed Liquor by a Multi-channel Taste Evaluation System

  • Kim, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.554-557
    • /
    • 2005
  • As a device for taste sensation, an 8-channel taste evaluation system was prepared and applied for discriminant analysis of marketed liquor. The biomimetic polymer membranes for the system were prepared through a casting procedure by employing polyvinyl chloride, bis (2-ethylhexyl)sebacate as plasticizer and electroactive materials such as valinomycin in the ratio of 33:66:1, and were separately attached over the sensitive area of ion-selective electrodes to construct the corresponding taste sensor array. The sensor array in conjunction with a double junction reference electrode was connected to a high-input impedance amplifier and the amplified sensor signals were interfaced to a personal computer via an A/D converter. When the signal data from the sensor array for 3 groups of marketed liquor like Maesilju, Soju and beer were analyzed by principal component analysis after normalization, it was observed that the 1st, 2nd and 3rd principal component were responsible for most of the total data variance, and the analyzed liquor samples were discriminated well in 2 dimensional principal component planes composed of the 1st-2nd and the 1st-3rd principal component.

Miniaturized Electronic Nose System Based on a Personal Digital Assistant

  • Kim, Yong-Shin;Yang, Yoon-Seok;Ha, Seung-Chul;Pyo, Hyeon-Bong;Choi, Auck-Choi
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.585-594
    • /
    • 2005
  • A small electronic nose (E-Nose) system has been developed using an 8-channel vapor detection array and personal digital assistant (PDA). The sensor array chip, integrated on a single microheater-embedded polyimide substrate, was made of carbon black-polymer composites with different kinds of polymers and plasticizers. We have successfully classified various volatile organic compounds such as methanol, ethanol, i-propanol, benzene, toluene, n-hexane, n-heptane, and c-hexane with the aid of the sensor array chip, and have evaluated the resolution factors among them, quantitatively. To achieve a PDA-based E-Nose system, we have also elaborated small sensor-interrogating circuits, simple vapor delivery components, and data acquisition and processing programs. As preliminary results show, the miniaturized E-Nose system has demonstrated the identification of essential oils extracted from mint, lavender, and eucalyptus plants.

  • PDF

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity

  • Park, Chang-Sub;Joo, Kyung-Il;Kang, Shin-Won;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.

Development of a Contact-Type Counting Device Using a Piezoelectric Film as a Sensor (압전필름을 센서로 사용한 접촉식 계수장치 개발)

  • Yoo, Wan-Dong;Kim, Jin-Oh;Park, Kwang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.239-247
    • /
    • 2005
  • This paper deals with the development of a contact-type counting device using a piezoelectric polymer film as a sensor. The piezoelectric and vibration characteristics of the film under a bending vibration were investigated theoretically and experimentally. A counting device, which includes filters, an amplifier, an analog-digital converter, and a display, was designed and fabricated. The performance of the piezoelectric polymer sensor was evaluated in the sense of the responses to contact force, contact frequency, and contact speed. The life and the temperature effect were also investigated for the piezoelectric film sensor.

Development of a Counting Device Using a Piezoelectric Sensor (압전 센서를 사용한 계수 장치 개발)

  • Yoo, Wan-Dong;Kim, Jin-Oh;Park, Kwang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1089-1092
    • /
    • 2004
  • This paper deals with the development of a contact-type counting device using a piezoelectric polymer film as a sensor. The piezoelectric and vibration characteristics of the film under a bending vibration were investigated theoretically and experimentally. A counting device, which includes filters, an amplifier, an analog-digital converter, and a display, was designed and fabricated. The performance of the piezoelectric polymer sensor was evaluated in the sense of the responses to contact force, contact frequency, and contact speed. The life and the temperature effect were also investigated for the piezoelectric film sensor.

  • PDF

Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing (이종 폴리머재료 어닐링을 이용한 유연저항센서 FDM 3D프린팅 제작실험)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • In this paper, the performances of the electrical characteristics of the Fused Deposition Modeling (FDM) 3D-printed flexible resistance sensor was evaluated. The FDM 3D printing flexible resistive sensor is composed of flexible-material thermoplastic polyurethane and a conductive PLA (carbon black conductive polylactic acid) polymer. While 3D printing, polymer filaments heat up quickly before being extruded and cooled down quickly. Polymers have poor thermal conductivity so the heating and cooling causes unevenness, which then results in internal stress on the printed parts due to the rapidity of the heating and cooling. Electrical resistance measurements show that the 3D-printed flexible sensor is unstable due to internal stress, so the 3D-printed flexible sensor resistance curve does not match the increases and decreases in the displacement curve. Therefore, annealing was performed to eliminate the mismatch between electrical resistance and displacement. Annealing eliminates residual stress on the sensor, so the electrical resistance of the sensor increases and decreases in proportion to displacement. Additionally, the resistance is lowered in comparison to before annealing. The results of this study will be very useful for the fabrication of various devices that employ 3D-printed flexible sensor that have multiple degrees of freedom and are not limited by size and shape.

A Study on the Apparatus for Measuring Oxygen-Permeability of Membranes with a Multi-Electrode Oxygen Sensor (다전극 산소 센서를 이용한 고분자 막의 산소 투과도 측정 장치 연구)

  • Jeong, Il-Son;Jung, Jae-Chil;Kim, Tai-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-234
    • /
    • 2012
  • The existing permeability measurements based on pressure differential between the polymer membrane that is permeable to measure the amount of oxygen used, but these methods must be kept in a vacuum, and the measurement of the membrane with low permeability in the membrane is too time consuming. In recent years by using electrochemical method polymer membrane currents caused by the amount of oxygen is a measure of how much is used. In this study, apparatus consisting of one anode and six cathodes for multi-oxygen permeability tester used the same number of membranes produced by electrochemical oxygen permeation characteristics. In this study, one silver/silver chloride anode electrochemical method with a hexagonal sensor to put various kinds of polymer membranes with the six oxygen permeability for simultaneous measurement in real-time systems. Six cathodes (Pt), and one of the coil-shaped anode (Ag/AgCl) to form a hexagonal one of the polarographic oxygen sensor in a single measurement system by six sensors. Each sensor for making hexagonal specificity of the sensor to compensate for the conditions obtained in a pure nitrogen gas and pure oxygen gas conditions. With this study, self-developed hexagonal sensor capable of measuring sensors and oxygen permeability tester, for a multi-six different oxygen permeability characteristics of the membrane measured at the same time.