Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.4.329

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity  

Park, Chang-Sub (Department of Sensor and Display Engineering, Kyungpook National University)
Joo, Kyung-Il (School of Electrical Engineering and Computer Science, Kyungpook National University)
Kang, Shin-Won (School of Electronics Engineering, Kyungpook National University)
Kim, Hak-Rin (School of Electronics Engineering, Kyungpook National University)
Publication Information
Journal of the Optical Society of Korea / v.15, no.4, 2011 , pp. 329-334 More about this Journal
Abstract
We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.
Keywords
Temperature sensor; Optical fiber sensor; Fiber Bragg grating; Elastomeric polymer; Thermal expansion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 D. R. Lide, CRC Handbook of Physics and Chemistry (CRC Press, Boca Raton, FL, USA, 2003).
2 Dow Corning Data Sheet, "www2.dowcorning.com/DataFiles/090007c88020b9a3.pdf".
3 C.-s. Park, Y. Han, K.-I. Joo, Y. W. Lee, S.-W. Kang, and H.-R. Kim, "Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating," Opt. Express 18, 24753-24761 (2010).   DOI
4 D. H. Young, R. A. Freedman, T. R. Sandin, and A. L. Ford, University Physics (Addison-Wesley, San Francisco, USA, 1992).
5 G. Meltz and W. W. Morey, "Bragg grating formation and germanosilicate fiber photosensitivity," Proc. SPIE 1516, 185-199 (1991).   DOI
6 S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopahyay, "Studies on surface wettability of Poly(Dimethyl)Siloxane (PDMS) and glass under Oxygen-plasma treatment and correlation with bond strength," J. Microelectromech. Syst. 14, 590-597 (2005).   DOI   ScienceOn
7 F. P. Mallinder and B. A. Proctor, "Elastic constants of fused silica as a function of large tensile strain," Phys. Chem. Glasses 2, 91-103 (1964).
8 D. Armani, C. Liu, and N. Aluru, "Re-configurable fluid circuits by PDMS elastomer micromachining," in Proc. IEEE Micro Electro Mechanical Systems (Orlando, FL, USA, 1999), pp. 91-103.
9 J. Mark, K. Ngai, W. Graessley, L. Mandelkern, E. Samulski, J. Koenig, and G. Wignall, Physical Properties of Polymers (Cambridge University Press, Cambridge, UK, 2004).
10 M.-H. Song, "A wideband interferometric wavelength shift demodulator of fiber Bragg grating strain sensor," J. Opt. Soc. Korea 3, 64-68 (1999).   과학기술학회마을   DOI   ScienceOn
11 S.-M. Lee and J.-S. Sirkis, "Hydrogen sensor based on palladiumattached fiber Bragg grating," J. Opt. Soc. Korea 3, 69-73 (1999).   DOI   ScienceOn
12 X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, "Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings," Appl. Phys. Lett. 83, 3003-3005 (2003).   DOI   ScienceOn
13 G. Chen, L. Liu, J. Jia, J. Yu, L. Xu, and W. Wang, "Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber," IEEE Photon. Technol. Lett. 16, 221-223 (2004).   DOI   ScienceOn
14 S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, "Fiber Bragg grating cryogenic temperature sensors," Appl. Opt. 35, 5202-5205 (1996).   DOI
15 C. Lupi, F. Felli, L. Ippoliti, M. A. Caponero, M. Ciotti, V. Nardelli, and A. Paolozzi, "Metal coating for enhancing the sensitivity of fibre Bragg grating sensors at cryogenic temperature," Smart Mater. Struct. 14, N71-N76 (2005).   DOI   ScienceOn
16 J. Jung, H. Nam B. Lee, J. O. Byun, and N. S. Kim, "Fiber Bragg grating temperature sensor with controllable sensitivity," Appl. Opt. 38, 2752-2754 (1999).   DOI
17 A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, USA, 1999).
18 G.-C. Lin, L. Wang, C. C. Yang, M. C. Shin, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 10, 406-408 (1998).   DOI   ScienceOn
19 J. Long, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, "An embedded FBG sensor for simultaneous measurement of stress and temperature," IEEE Photon. Technol. Lett. 18, 154-156 (2006).   DOI
20 P. Lu, L. Men, and Q. Chen, "Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings," Appl. Phys. Lett. 92, 171112 (2008).
21 Y. J. Rao, "Recent progress in applications of in-fiber Bragg grating sensors," Opt. Laser Eng. 31, 297-324 (1999).   DOI   ScienceOn