• Title/Summary/Keyword: Polymer Additives

Search Result 274, Processing Time 0.027 seconds

A study on the drag reduction in a horizontal two phase flow (수평 2상유동에서 마찰저항감소에 관한 연구)

  • Cha, Gyeong-Ok;Kim, Jae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1472-1480
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a linear macromolecules has attracted the attention of experimental investigations. It is well known that drag reduction in single phase liquid flow is affected by polymer materials, molecular weight, polymer concentration, pipe diameter and flow velocity. But the research on drag reduction in two phase flow has not intensively investigated. Drag reduction can be applied to phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, mean liquid velocity, and turbulent intensity and determine the effects of polymer additives on drag reduction in horizontal two phase flow. Experimental results show higher drag reduction using co-polymer comparing with using polyacrylamide. Mean liquid velocities increase as adding more polymer, and turbulent intensities decrease as the distance for the wall in inversed.

Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer (Graft Polymer를 이용한 수계 세라믹 잉크의 합성 및 프린팅 특성평가)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.639-646
    • /
    • 2019
  • Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.

The Improvement of Interlaminar Shear Strength for Low Density 2-D Carbon/Carbon Composites by Additives (첨가제에 의한 저밀도 2-D 탄소/탄소 복합재의 층간전단강도 개선)

  • 손종석;정구훈;주혁종
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.845-853
    • /
    • 2000
  • The optimum cure cycle and carbonization condition were selected by the DSC and TGA analysis and green bodies were prepared by the method of hot press molding and then carbonized up to 140$0^{\circ}C$. Additives such as graphite powder, carbon black, milled carbon fiber and carbon fiber mat, which were considered to be effective in improving the interlaminar shear strength, were also added to check their effects on the density and porosity of products. Then, their relations with mechanical properties such as ILSS and flexural strength were investigated. The composites added 9 vol% of graphite powder showed the greatest values of ILSS and flexural strength. Otherwise, in case of adding carbon black, the composites showed the slight improvement of ILSS at its contents of 3 vol% but the flexural strength was decreased. When milled carbon fiber and carbon fiber mat were added, the lack of resin and the heat shrinkage during the carbonization caused the delamination, resulting in decreasing the density, ILSS and flexural strength.

  • PDF

Effect of Additives on the Orientation of Magnetic Sr-Ferrite Powders in Powder Injection Molded Compacts (분말사출성형체에서 Sr-페라이트 자성분말의 배향도에 미치는 첨가제의 영향)

  • 조태식;정원용
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.240-245
    • /
    • 2001
  • The effect of additives on the orientation of magnetic Sr-ferrite powders has been studied during powder injection molding under applied magnetic field for fabricating multi-pole anisotropic sintered Sr-ferrite magnets. The orientation of the Sr-ferrite powders depends sensitively on the fluidity of powder-binder mixture, related to the binder additives and the injection molding temperature, and the magnetic field intensity. The orientation of Sr-ferrite powders is good for the compacts with stearic acid added in the binder system of paraffin wax/carnauba wax/HDPE, but it is poor for the compacts with silane coupling agent added. The orientation of Sr-ferrites higher than 80% is achieved at the following useful conditions; apparent viscosity lower than 2500 poise in 1000 sec$^{-1}$ shear rate and applied magnetic field higher than 4 kOe.

  • PDF

Effects of Polymers on the Cocrystallization of Adefovir Dipivoxil and Suberic Acid (고분자를 이용한 Adefovir Dipivoxil과 Suberic Acid의 공결정 제어)

  • Jung, Sungyup;Kim, Il Won
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.663-668
    • /
    • 2013
  • The effects of polymers on the cocrystallization of adefovir dipivoxil (AD) and suberic acid (SUB) were investigated. The polymeric additives in the present study were poly(ethylene glycol) (PEG) and poly(acrylic acid) (PAA). When the polymers were added to the solution of AD and SUB, their effects were limited to the morphology and crystallinity of the AD/SUB cocrystal, which could be also achieved without polymeric additives by the excess amount of SUB in the solution or through the solvent-assisted grinding. When the polymers were mixed with AD before adding SUB in the solution, PEG was dramatically more effective at the same amount with possible alteration of the cocrystal structure. Also, PAA completely inhibited the formation of crystals. The present study demonstrated that the effects of polymers on the cocrystallization could be tuned by simply modifying the mixing strategy.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Polymers and Inorganics: A Happy Marriage?

  • Wegner Gerhard;Demir Mustafa M.;Faatz Michael;Gorna Katazyrna;Munoz-Espi Rafael;Guillemet Baptiste;Grohn Franziska
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.95-99
    • /
    • 2007
  • The most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly(acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of tree radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.

Effects of Polymer Coated Micro pulp on Paper Properties (고분자 코팅 처리된 마이크로 펄프가 종이 물성에 미치는 영향)

  • Son, Dong-Jin;Kim, Hak-Sang;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • Commercial micro pulps(Arbocel) were coated with three kinds of polymers using spray method. These coated micro pulps were used to papermaking additives to evaluate retention, drainage and physical properties of paper. The retention and drainage were improved with addition of polymer coated micro pulp. The bulk index of paper was also increased, but tensile and tear strength were decreased slightly, probably due to weakening of internal bonding. These results showed that the use of polymer coated micro pulp was an effective method to improve retention, drainage and bulk index of paper.

Photosensitive Black Matrix Paste for Bus Electrode of PDP

  • Woo, Chang-Min;Kim, Duck-Gon;Kim, Dong-Ju;Song, Gab-Deuk;Kim, Soon-Hak;Cho, Ho-Young;Lee, Yoon-Soo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1360-1363
    • /
    • 2007
  • The bus electrode is composed of two layers. One is the black matrix(BM) and silver layer is formed on top of black layer. The BM paste is made by mixing $Co_3O_4$ black powder with photosensitive vehicle and rheological additives. In this work we studied the effect of $Co_3O_4$ black powder and glass frit on the rheological property of photosensitive BM paste. We also examined how the size and content of black powder and glass frit affect the transmittance and reflectance of the BM layer after sintering.

  • PDF

Material Design for the Fabrication of Barrier Ribs with High Aspect Ratio of Plasma Display Panel by X-ray Lithography

  • Ryu, Seung-Min;Yang, Dong-Yol;So, Jae-Yong;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.989-992
    • /
    • 2008
  • X-ray lithography is one of the most powerful processes in the fabrication of nano/micro structures with a high aspect ratio. This process enables the fabrication of ultra-thin barrier ribs for PDP using X-ray sensitive paste. In this paper, organic material including photo-monomers, photo-oligomers, binder polymer and additives as well as inorganic powders with different size were optimized to fabricate high aspect ratio barrier rib pattern for PDP.

  • PDF