• Title/Summary/Keyword: Polymer Actuator

Search Result 176, Processing Time 0.03 seconds

Bending Motion Control of Electroactive Polymer Actuator-Sensor Hybrid Structure for Finger Exoskeleton (손가락 외골격용 전기활성 고분자 구동체-센서 하이브리드 구조체의 굽힘 동작 제어)

  • Han, Dong Gyun;Song, Dae Seok;Jho, Jae Young;Kim, Dong Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.865-871
    • /
    • 2015
  • This study was conducted in order to develop a finger exoskeleton system using ionic polymer metal composites (IPMCs) as the actuator and sensor in a hybrid structure. To use the IPMC as an actuator producing large force, a first order transfer function was obtained using results from a block force for DC excitation that applied to two IPMCs of 20mm-width, 50mm-length, and 2.4mm thickness together. After which the validation of 200gf control with anti-windup PI controller was confirmed. A 5mm-width, 50mm-length, 0.6mm-thickness of IPMC was also modeled as a sensor for tip displacement. As a result, the IPMC sensor could been utilized as a trigger role for the actuator. Finally, an IPMC sensor and actuator were installed on the joint of a single DOF exoskeleton in the hybrid structure, and test for the control of 40gf of block force and predefined sequence of motion was performed.

Robust motion control of a flexible micro-actuator using $H_{\infty}$ control method

  • Okugawa, Masayuki;Sasaki, Minoru;Fujisawa, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.397-400
    • /
    • 1996
  • In this paper, robust motion control of a flexible micro-actuator is presented. The actuator is made of a bimorph piezoelectric high-polymer material (PVDF). No mathematical model system can exactly model a physical system such a flexible micro-actuator. For this reason we must be aware of how modeling errors might adversely affect the performance of a control system for such a model. The H method addresses a wide range of the control problems, combining the frequency and time domain approaches. The design is an optimal one in the sense of minimization of the maximum of the closed-loop transfer function. It includes colored measurement and process noise. It also addresses the issues of robustness due to model uncertainties, and is applicable to the, flexible micro-actuator control problem. Therefore, we adopt the H control problem to the robust motion control of the flexible micro-actuator. Theoretical and experimental results demonstrate the satisfactory performance and the effectiveness of the designed controller. the effectiveness of the designed controller.

  • PDF

Theoretical Modeling and Dynamic Characteristics of a Cantilever IPMC Actuator (외팔보형 IPMC 구동기의 이론적 모델링과 구동특성)

  • Han, Dae-Woong;Lee, Seung-Yop;Cho, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1521-1526
    • /
    • 2008
  • IPMC(Ionic Polymer-Metal Comosite) exhibits large deformation, having great attention in many application fields. It generates bending moment by ion exchange polymer film. It can be quickly bended by the applied voltage across the plated electrode of the polymer film. In the present paper, we derive the theoretical modeling and dynamic analysis of bending motions of IPMC actuators using the Euler-Bernoulli beam theory. The theoretical model of a cantilever IPMC actuator estimates the moment produced by the applied voltage. The dynamic characteristics, including natural frequencies and frequency response, are calculated by the theoretical model, and they are compared with the experimental results and finite element analysis. It is shown that the mathematical modeling allows precise estimation to the voltage-driven motion of the cantilever IPMC in air.

  • PDF

Fabrication of a Micropump using Piezoelectric Actuator (압전 구동기를 이용한 마이크로 펌프의 제작)

  • Ji, Y.H.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1957-1959
    • /
    • 1996
  • In this paper, a piezoelectric micropump is fabricated and tested. The micropump consists of an actuator and two micronozzles have been made of silicon. It contains a piezoelectric polymer which allows opening and closing of the valves electrically. The actuator and the two micronozzles are fabricated by the anisotropic etch using EPW. Then, the fabricated actuator and the valves are anodically bonded with the pyrex glass which consists of the inlet and the outlet channels. The measured deflection of the piezoelectric polymer is $54\;{\mu}m$ at 1.6 kHz. The maximum pumping flow rate and the backward pressure of the micropump are $22\;{\mu}{{\ell}/min$, 8.7 Pa at 10 Hz, respectively.

  • PDF

Biomimetic Design of IPMC Actuator having Webfoot Form (생체모방 물갈퀴형 IPMC 구동기 설계)

  • Kim, Seon-Gi;Kim, On-Ah;Lee, Seung-Yop
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1558-1562
    • /
    • 2008
  • Ionic polymer metal composite (IPMC), one of Electro- Active Polymer (EAP) actuators, has great attention due to the low-voltage driven, large deformation and its potential for artificial muscles. In this paper, we firstly review fish swimming modes using various propulsion mechanisms. Based on study on the swimming mechanisms, we develop an underwater robot actuator which mimics fanning motion of webfoot form. It consists of four actuators fabricated by using IPMC and PDMS which mimics Bio-inspired motion Experiments using a prototype show that the webfooted IPMC actuator generates large deformation and propulsion.

  • PDF

Pre-shaping of ionic polymer metal composite actuators by heat treatment and characterization (이온성 고분자 금속 복합물(IPMC) 액추에이터의 열처리에 의한 성형 및 특성분석)

  • Park, Shin-Ho;Kim, Dong-Ik;Park, Man-Jun;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.353-358
    • /
    • 2009
  • Ionic polymer metal composite(IPMC) has been used as a promising material for various actuator applications. The IPMC actuator is difficult to be fabricated with complicated 3-dimensional shape. We propose a simple heat treatment process that can fabricate IPMC actuator with various shapes. Experimental results show the pre-shaped IPMC actuator by heat treatment does not show any degradation of its actuation abilities such as bending displacement, generation force and reliability in bending motion.

Study of a Conducting Nafion Film-Gold Electrode Actuator (전도성 네피온필름-금 전극층 액츄에이터에 관한 연구)

  • Jung, Won-Chae;Kim, Hyung Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.360-366
    • /
    • 2013
  • For conventional electrical actuators, the materials are mainly made up of metals, which mean they are prone to corrosion and electrical sparking. Replacing these systems with polymer metal composite based materials can be solved both problems. Considering their excellent electromechanical property, low device fabrication cost, light weight, and good electrical conductivity, the actuator based on ionic polymer metal composite (IPMC) was fabricated using Nafion film, NaOH 0.1 molar solution, and Au electrode. IPMCs exhibit good electrostatic property which means they can in principle be used in making actuators based on electromechanical motions. The resistance measurements of Nafion film after soaking in NaOH and deionized water were demonstrated and compared each other. The result of sample soaked in NaOH showed better electrical conductivity than in deionized water. The fabricated IPMC actuator exhibits a large deformation of bending displacement of approximately 9 mm with applied low AC voltage 6.89 V at 2.84 Hz. The result of computer simulation was also very similar and shown as a bending displacement of 8.6085 mm.

A Study of Dynamic Characteristics of Segmented Shape Memory Alloy Wire (구간 분할된 형상기억합금 와이어의 동특성에 관한 연구)

  • Jeong S.H.;Kim J.H.;Kim G.H.;Lee S.H.;Shin S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.329-330
    • /
    • 2006
  • The research and development of an actuator are accelerating in the robotics industry. The electricity polymer and SMA actuator are designed simply and are produced a lot of forces per unit volume. Their motions are similar to human's motion, But the repeatability of the electricity polymer actuator is lower. The reaction velocity of the SMA actuator is slow and the travel is short. In this paper, the dynamic characteristic of the segmented SMA is studied. The SMA wire is divided by using the Thermo-electric module(TEM) to control each of segments independently. The MOSFET circuit is used to supply constant currents fer the Thermo-electric module(TEM). The hysteresis and displacement of the SMA wire according to load are measured.

  • PDF

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.