Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.5.360

Study of a Conducting Nafion Film-Gold Electrode Actuator  

Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
Kim, Hyung Min (Department of Mechanical System Design Engineering, Kyonggi University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.5, 2013 , pp. 360-366 More about this Journal
Abstract
For conventional electrical actuators, the materials are mainly made up of metals, which mean they are prone to corrosion and electrical sparking. Replacing these systems with polymer metal composite based materials can be solved both problems. Considering their excellent electromechanical property, low device fabrication cost, light weight, and good electrical conductivity, the actuator based on ionic polymer metal composite (IPMC) was fabricated using Nafion film, NaOH 0.1 molar solution, and Au electrode. IPMCs exhibit good electrostatic property which means they can in principle be used in making actuators based on electromechanical motions. The resistance measurements of Nafion film after soaking in NaOH and deionized water were demonstrated and compared each other. The result of sample soaked in NaOH showed better electrical conductivity than in deionized water. The fabricated IPMC actuator exhibits a large deformation of bending displacement of approximately 9 mm with applied low AC voltage 6.89 V at 2.84 Hz. The result of computer simulation was also very similar and shown as a bending displacement of 8.6085 mm.
Keywords
Ionic polymer composite; Actuator; Displacement; Computer simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Shahinpoor and K. J. Kim, Smart Mater. and Structure, 10, 819 (2001).   DOI   ScienceOn
2 K. J. Kim and M. Shahinpoor, Smart Mater. and Structure, 12, 65 (2003).   DOI   ScienceOn
3 M. Shahinpoor and K. J. Kim, Smart Mater. and Structure, 14, 197 (2005).   DOI   ScienceOn
4 J. J. Park, S. E. Cha, H. J. Ahn, and S. K. Lee, Intl. J. of Control Automationand Systems, 4, 748 (2006).
5 J. Y. Li and S. Nemat-Nasser, Mechanics of Mater., 32 303 (2000).   DOI   ScienceOn
6 T. A. Kovacs, Micromachined Transducers Source Book (McGraw Hill, Boston, 1998) p. 278.
7 T. M. Adams and R. A. Layton, Introductory MEMS Fabrication and Applications (Springer, Terre Haute, Indiana 2010) p. 230.
8 F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, J. of Membrane Science, 212 213 (2003).   DOI   ScienceOn
9 L. Sun and T. Okada, Analytica Chimica Acta, 421, 83 (2000).   DOI   ScienceOn
10 K. A. Mauritz and R. B. Moore, Chem. Rev., 104, 4535 (2004).   DOI   ScienceOn
11 D. Pugal, K. J. Kim, A. Punning, and H. Kasemagi, J. of Appl. Phys., 103, 908 (2008).
12 A. A. Tseng, Nanofabrication Fundamentals and Applications (World Scientific, New Jersey, 2008) p. 544.
13 J. W. L. Zhau, H. Chan, T. K. H. To, W. C. Lai, and W. J. Li, IEEE/ASME TrSactions. on Mechatronics, 9, 334 (2004).   DOI   ScienceOn
14 R. Tiwari and K. J. Kim, Smart Mater. Struct. 19, 1 (2010).
15 Z. Zhu, H. Chen, Y. Wang, and B. Li, Proc. SPIE, (San Diego, 2012) p. 117.
16 S. Goswani, S. Klaus, and J. Benziger, Langmuir, 24, 8627 (2008).   DOI   ScienceOn
17 S. G. Lee, H. C. Park, S. D. Panidita, and Y. Yoo, Inter. J. Control Automation and Systems, 4, 748 (2006).
18 C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, Sensor. Actuat. B117, 367 (2006).