• Title/Summary/Keyword: Polyethersulfone

Search Result 141, Processing Time 0.025 seconds

Pervaporation Separation of fluoroethanol/water Mixtures through Crosslinked Poly(vinyl alcohol) Composite Membranes (가교된 폴리비닐알콜 복합막을 이용한 불화에탄올/물 혼합용액의 투과증발분리 특성)

  • 이수복;안상만;장봉준;김정훈;이용택
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.166-172
    • /
    • 2004
  • As a preliminary study for esterification membrane reactor used to produce 2,2,2-trifluoroethylmetacrylate (TFEMA), Pervaporation behaviors with crosslinked Poly(vinyl alcohol) composite membranes were investigated for aqueous TFEA (2,2,2-trifluoroethanol) feed solutions. In this study, crosslinked PVA composite membranes were prepared by reacting PVA with glutaraldehyde (CA)/acid catalyst onto porous polyethersulfone (PES) supports. SEH images (scanning electron microscopy) showed the thicknesses of selective coating layer was about 2-3 ${\mu}{\textrm}{m}$. The swelling tests showed the dogree of crosslinking decreased as content of the crosslinking agent, GA, increased. Total permeation flux decreased while separation factor increased as the CA content increased. As operating temperature increased, total permeation flux remarkably increased in the range of 85-95 wt% TFEA aqueous solutions. Interestingly, however, separation factor decreased in 85-90 wt% with operating temperature, while that increased in 95 wt%. In case of 90 wt% TFEA concentration and operating temperature 8$0^{\circ}C$, the PVA composite membrane crosslinked with 0.1 mol GA per PVA repeating unit showed high permeation flux of 1.5 kg/$m^2$hr and separation factor of 320. These results confirmed the applicability of the PVA composite membranes for the esterification membrane reactor of TFEMA.

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.

Development of Ceramic Membrane for Metal Ion Separation of Lignin Extract from Pulp Process (펄프공정으로부터 배출되는 리그닌 추출물의 금속이온 분리를 위한 세라믹 분리막 개발)

  • Shin, Min Chang;Choi, Young Chan;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, a study was carried out for the separation of metal ions in lignin extract discharged from the pulp process. alumina powders were mixed with DMAc (N, N-dimethylacetamide) solvent and PESf (Polyethersulfone) polymer, PVP (polyvinylpyrrolidone) dispersant was added and slip casting method was used to prepare the membrane. The membrane was measured for pore size through a CFP (Capillary Flow Porometer) device and the surface and cross-section of the membrane were observed through a FE-SEM (Field Emission Scanning Electron Microscope). The flux was calculated by measuring the filtered weight per hour using a separation experiment device. Pore size measurements were performed under increasing pressure from 0 psi to 30 psi. The pore size of the membrane was $0.4{\mu}m$ and the flux decreased from the initial flux value of $6.36kg{\cdot}m^{-2}{\cdot}h^{-1}$ to $1.98kg{\cdot}m^{-2}{\cdot}h^{-1}$ due to the fouling of the membrane. After the permeation experiment, membrane contaminants were removed by simple washing. Separation experiments showed that Na contained in the initial lignin extract was reduced by 69%, Fe was removed by 87%, K by 95%, Ca by 93% and Mg by 96%.

Gas Permeation Characteristics of PEBAX2533 Membrane Containing PEGDA and ZIF-8 (PEGDA와 ZIF-8을 함유한 PEBAX2533 막의 기체투과 특성)

  • Kim, Sun Hee;Hong, Se Ryeong;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.46-56
    • /
    • 2020
  • In this study, poly (ether-block-amide) (PEBAX)/poly (ethylene) glycoldiacrylate (PEGDA)/zeolitic imidazolate framework-8 (ZIF-8)-polyethersulfone (PES) composite membranes were prepared. The gas permeation properties of N2 and CO2 were investigated for each composite membrane. First, the gas permeability in the PEBAX/PEGDA-PES composite membrane decreased with increasing PEGDA content for each molecular weight at PEGDA250, PEGDA575, and PEGDA-700 g/mol. The CO2/N2 selectivity showed a constant value and gradually increased with increasing PEGDA content after 30 wt% PEGDA, and PEBAX/PEGDA250 50 wt%-PES prepared by adding PEGDA250 g/mol 50 wt% showed a selectivity of 15.1. This is because as the PEGDA content increases, the number of diacrylate groups increases, and the CO2 affinity due to the ether structure of PEGDA increases. Gas permeation properties according to ZIF-8 were investigated for composite membranes of PEGDA 0 to 30 wt%, with CO2/N2 selectivity almost constant for each molecular weight. The permeability of N2 and CO2 gradually increased with increasing ZIF-8 content, and CO2/N2 selectivity was the highest at 3.4 in PEBAX/PEGDA250 g/mol 30 wt%/ZIF-8 20 wt%-PES composite membrane.

Effect of Polymer Structure on Membrane Morphology by Addition of 2-butoxyethanol (2-butoxyethanol 첨가에 따른 고분자 구조가 분리막 구조에 미치는 영향)

  • Son, Ye-Ji;Kim, No-Won
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.377-388
    • /
    • 2011
  • Flat sheet microfiltration membranes were prepared with polysulfone (PSF), polyethersulfone (PES), and polyphenylsulfone (PPS) by an immersion precipitation phase inversion method. In this method, dimethyl formamide (DMF) and polyvinylpyrrolidone (PVP) were used as a solvent and a wetting polymer additive, respectively. 2-butoxyethanol (BE) was used as a nonsolvent additive catalyst to form pore. The morphology of membranes was investigated by scanning electron microscopy and micropermporometer. The permeability of the membranes was evaluated with the flux of pure water. When the BE was added, the pore size of membranes became larger than blank membranes. The changes in the morphology of membrane due to the BE addition depend on polymer structure. All membranes have similar mean pore size and porosity. The mean pore sizes of PSF, PES, and PPS membranes were 0.282, 0.330 $0.308{\mu}m$, respectively. The porosities of PSF, PES and PPS membranes were 68.5, 66.1, 66.4%, respectively. However, the PPS membrane showed higher pore density on surface and narrower pore size distribution than PSF or PES membrane does. As a result, the pure water flux of PPS membrane ($357L/m^2\;hr$) was higher than that of PSF ($196L/m^2\;hr$) or PES membrane ($214L/m^2\;hr$).

Preparation of Asymmetric PES Hollow Fiber Gas Separation Membranes and Their $CO_2/CH_4$ Separation Properties (비대칭구조의 폴리이서설폰 기체분리용 중공사막의 제조 및 이를 이용한 $CO_2/CH_4$ 분리특성)

  • Park, Sung-Ryul;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • Huge amount of $CH_4$ mixtures has been emitted from landfills and organic wastes via anaerobic digestion. The recovery of high purity $CH_4$ from these gases has two merits: reduction of green house gases and production of renewable fuels. Membrane technology based on polymeric materials can be used in this application. In this study, asymmetric gas separation hollow fiber membranes were fabricated to develop the membrane-based bio-gas purification process. Polyethersulfone (PES) was chosen as a polymer materials because of high $CO_2$ permeability of 3.4 barrer and $CO_2/CH_4$ selectivity of 50[1]. Acetone was used as a non-solvent additive because of its unique swelling power for PES and highly volatile character. The prepared PES hollow fiber showed excellent separation properties: 36 GPU of $CO_2$ permeance and 46 of $CO_2/CH_4$ selectivity at optimized preparation conditions: 9wt% acetone content, 10cm air-gap and 4wt% PDMS coating processes. With the PES hollow fiber membranes developed, mixed $CO_2/CH_4$ test was done by changing various operating conditions such as pressures and feed compositions to meet the highest recovery of CH4 with 95% purity. High $CH_4$ recovery of 58 wt% was observed at 10 atm feed pressure for the 50 vol% of $CO_2$ in $CO_2/CH_4$ mixture.

Improving Physical Fouling Tolerance of PES Filtration Membranes by Using Double-layer Casting Methods (PES 여과막의 물리적 막오염 개선을 위한 기공 구조 개선 연구)

  • Chang-Hun Kim;Youngmin Yoo;In-Chul Kim;Seung-Eun Nam;Jung-Hyun Lee;Youngbin Baek;Young Hoon Cho
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • Polyethersulfone (PES) is a widely employed membrane material for water and industrial purification applications owing to its hydrophilicity and ease of phase separation. However, PES membranes and filters prepared using the nonsolvent induced phase separation method often encounter significant flux decline due to pore clogging and cake layer formation on the dense membrane surfaces. Our investigation revealed that tight microfiltration or loose ultrafiltration membranes can be subject to physical fouling due to the formation of a dense skin layer on the bottom side caused by water intrusion to the gap between the shrank membrane and the substrate. To investigate the effect of the bottom surface porosity on membrane fouling, two membranes with the same selective layers but different sub-layer structures were prepared using single and double layer casting methods, respectively. The double layered PES membrane with highly porous bottom surface showed high flux and physical fouling tolerance compared to the pristine single layer membrane. This study highlights the importance of physical optimization of the membrane structure to prevent membrane fouling.

Performance and Characterization of Ceramic Membrane by Phase Inversion-Extrusion Process with Polymer Binder Mixing (상전이-압출 알루미나 분리막 제조 공정에서 혼합 고분자 바인더 적용에 따른 성능 및 특성 평가)

  • Sojin Min;Ahrumi Park;Yongsung Kwon;Daehun Kim;You-In Park;Seong-Joong Kim;Seung-Eun Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2023
  • Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.

Fabrication of Fluorinated Polymeric Membranes and Their Noble Gas Separation Properties (불소 표면 개질 고분자 분리막의 제조와 노블가스 분리특성)

  • Kim, Gi-Bum;Yoon, Kuk-Ro
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.475-478
    • /
    • 2010
  • Fluorinated polymeric membranes were prepared by direct surface modification of PDMS with fluorine gas ($50{\sim}2000\;{\mu}mol/mol$ in nitrogen). The formed fluorinated polymeric membranes were characterized by FT-IR spectroscopy, GC (Gas chromatography), atomic force microscopy, and scanning electron microscopy. Direct fluorination resulted in the change of permeability and selectivity of various gases (pure gases such as $CO_2$, $O_2$, $N_2$, $C_2H_4$, mixture of He, Ne, Kr, Xe) through PDMS membranes. Fluorination resulted in the maximum 50% increase of selectivity through PDMS membrane.

Properties of IZTO Thin Film prepared by the Hetero-Target sputtering system (상온에서 증착한 IZTO 박막의 기판 종류에 따른 특성)

  • Kim, Dae-Hyun;Rim, You-Seong;Kim, Sang-Mo;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.203-204
    • /
    • 2009
  • The Indium Zinc Tin Oxide (IZTO) thin films for flexible display electrode were deposited on poly carbonate (PC) and polyethersulfone(PES) and glass substrates at room temperature by facing targets sputtering (FTS). Two different kinds of targets were installed on FTS system. One is ITO ($In_2O_3$ 90 wt.%, $SnO_2$ 10 wt.%), the other is IZO ($In_2O_3$ 90 wt.%, ZnO 10 wt.%). As-deposited IZTO thin films were investigated by a UV/VIS spectrometer, an X-ray diffractometer (XRD), an atomic force microscope (AFM) and a Hall Effect measurement system. As a result, we could prepare the IZTO thin films with the resistivity of under $10^{-4}\;[{\Omega}{\cdot}cm]$ and IZTO thin films deposited on glass substrate showed an average transmittance over 80% in visible range (400~800 nm) in all IZTO thin films except in IZTO thin film deposited at $O_2$ gas flow rate of 0.1[sccm].

  • PDF