• 제목/요약/키워드: Polyesters

검색결과 148건 처리시간 0.02초

피로포스포릭 변성폴리에스테르/HDI-Biuret에 의한 PU 난연도료의 제조 및 난연최적화 (Preparation and Flame-Retardant Optimization of PU Coatings Using Pyrophosphoric Modified Polyester/HDI-Biuret)

  • 신동일
    • 한국응용과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.110-117
    • /
    • 2003
  • Pyrophosphoric modified polyesters (TATBs) were synthesized by polycondensation of adipic acid, trimethylolpropane, 1,4-butanediol, and tetramethylene bis(orthophosphate). Two-component PU flame-retardant coatings (TATBCs) were prepared by blending TATBs with HDI-Biuret. Most of the physical properties of the flame-retardant coatings were comparable to those of non-flame-retardant coatings. Coatings containing 10 and 15wt% 1,4-butanediol, TATBC-10C and TATBC-15C were not flammable in the vertical flame-retardancy test.

Studies on the Ternary Blends of Liquid Crystalline Polymer and Polyesters

  • Kim, Seong-Hun;Kang, Seong-Wook
    • Fibers and Polymers
    • /
    • 제1권2호
    • /
    • pp.83-91
    • /
    • 2000
  • Thermotropic liquid crystalline polymer made up of poly(p-hydroxybenzoate) (PHB)-poly(ethylene terephthalate)(PET) 8/2 copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to pursue the liquid crystalline phase of ternary blends. Complex viscosities of blends decreased with increasing temperature and PHB content. DSC thermal analysis indicated that glass transition temperature (Tg) and melting temperature (Tm) of blends increased with increasing PHB content. Both tensile strength and initial modulus increased with raising PHB content and take-up speed of monofilaments. In the WAXS diagram, only PEN crystal reflection at 2Θ=$15.5^{\circ}C$ appeared but PET crystal reflection was not shown in all compositions. The degree of transesterification and randomness of blends increased with blending time but sequential length of both PEN and PET segment decreased.

  • PDF

Mechanical and Water Barrier Properties of Biopolyester Films Prepared by Thermo-Compression

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.62-66
    • /
    • 2007
  • Four different biopolyester films, two aliphatic polyesters including polylactides (PLA) and poly(3-hydroxy-butyrate-co-3-hydroxyvalerate (PHBV), and two aliphatic-aromatic copolyesters including Ecoplex and Biomax, were prepared using by thermo-compression, and their tensile and water barrier properties were determined. Among the films tested, PLA film was the most transparent (T: 95.8%), strongest, and stiffest (TS, 40.98 MPa; E, 1916 MPa), however it was rather brittle. In contrast, Ecoplex film was translucent while being the most flexible and resilient (EB, 766.8%). Biomax film was semitransparent and was the most brittle film tested (EB, 0.03%). All biopolyester films were water resistant exhibiting very low water solubility (WS) values ranging from 0.0.3 to 0.36%. PHBV film showed the lowest water vapor permeability (WVP) value ($1.26{\times}10^{-11}\;g{\cdot}m/m^2{\cdot}sec{\cdot}Pa$) followed by Biomax, PLA, and Ecoflex films, respectively. The water vapor barrier properties of each film were approximately 100 times higher than those of carbohydrate or protein-based films, but about 100 times lower than those of commodity polyolefin films such as low-density polyethylene (LDPE) or polypropylene (PP).

이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용 (Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application)

  • 이상현;박태준
    • KSBB Journal
    • /
    • 제25권5호
    • /
    • pp.409-420
    • /
    • 2010
  • Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applications such as tissue engineering, regenerative medicine, drug-delivery systems, and biosensors, because of their inherent biocompatibility and biodegradability. However, the insolubility of unmodified biopolymers in most organic solvents has limited the applications of biopolymer-based materials and composites. Ionic liquids (ILs) are good solvents for polar organic, nonpolar organic, inorganic and polymeric compounds. Biopolymers such as cellulose, chitin/chitiosan, silk, and DNA can be fabricated from ILs into films, membranes, fibers, spheres, and molded shapes. Various biopolymer/biopolymer and biopolymer/synthetic polymer composites also can be prepared by co-dissolution of polymers into IL mixtures. Heparin/biopolymer composites are especially of interest in preparing materials with enhanced blood compatibility.

Cometabolism of $\omega$-Phenylalkanoic Acids with Butyric Acid for Efficient Production of Aromatic Polyesters in Pseudomonas putida BM01

  • Song, Jae-Jun;Choi, Mun-Hwan;Yoon, Sung-Chul;Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.435-442
    • /
    • 2001
  • Poly(3-hydroxy-5-phenylvalerate) [P(3HPV)] was efficiently accumulated from 5-phenylvalerate (5PV) in Pseudomonas putida BM01 in a mineral salts medium containing butyric acid (BA) as the cosubstrate. A nove aromatic copolyester, poly(5 mol% 3-hydroxy-4-phenylbutyrate-co- 95 mol% 3-hydroxy-6-phenylhexanoate) [P(3HPB-co-3HPC)] was also synthesized from 6-phenylhexanoate (6PC) plus Ba. The two aromatic polymers, P(3HPV) and P(3HPB-co-3HPC), were found to be amorphous and showed different glass-transition temperatures at $15^{\circ}C$ and $10^{\circ}C$, respectively. When the bacterium was grown ina medium containing 20 mM 5PV as the sole carbon source for 140 h, 0.4 g/l of dry cells was obtained in a flask cultivation and 20 wt% of P(3HPV) homopolymer was accumulated in the cells. However, when it was grown with a mixture of 2 mM 5PV and 50 mM BA for 40 h, the yield of dry biomass was increased up to 2.5 g/l and the content of P(3HPV) in the dry cells was optimally 56 wt%. This efficient production of P(3HPV) homopolymer from the mixed substrate was feasible because BA only supported cell growth and did not induce any aliphatic PHA accumulation. The metabolites released into the PHA synthesis medium were analyzed using GC or GC/MS. Two $\beta$-oxidation derivatives, 3-phenylpropionic acid and trans-cinnamic acid, were found in the 5V-grown cell medium and these comprised 55-88 mol% of the 5PV consumed. In the 6PC-grown medium containing Ba, seven ${\beta}$-oxidation and related intermediates were found, which included phenylacetic acid, 4-phenylbutyric acid, cis-4-phenyl-2-butenoic acid, trans-4-phenyl-3-butenoic acid, trans-4-phenyl-2-butenoic acid, 3-hydroxy-4-phenylbutyric acid, and 3-hydroxy-6-phenylhexanoic acid. Accordingly, based on the metabolite analysis, PHA synthesis pathways from the two aromatic carbon sources are suggested.

  • PDF

인과 염소 함유 변성폴리에스터/이소시아네이트 가교 폴리머의 PU 난연도료에의 적용 (Application of Isocyanate and Modified Polyester Containing Phosphorous and Chlorine to Crosslinked PU Flame-Retardant Coatings)

  • 박홍수;김송형;안성환;유규열;함현식
    • 한국응용과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.124-139
    • /
    • 2007
  • In order to obtain the maximum flame retardancy with the minimal deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorous functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kind of intermediates to obtain copolymer. The modified polyesters containing chlorine and phosphorous (ATBA-10C, -20C, and -30C) were synthesized by adjusting the contents of chlorine compound (dichloroacetic acid, 10, 20, 30 wt%) with fixed the content of phosphorous compound (2 wt%). The PU flame-retardant coatings (TTBAH -10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorous were inferior to those with phosphorous only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, Complete combustion time of ATBAHs were $259^{\sim}347$ seconds, which means that the prepared coatings are good flame-retardant. With the $45^{\circ}$ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are 1st grade flame retardancy. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of $30^{\sim}35%$, which proves good flame retardancy of the prepared coatings. From the results of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds, it was found that the coatings containing both phosphorous and chlorine show higher flame retardancy than the coatings containing phosphorous alone. This indicates that some synergy effect of flame retardancy exists between phosphorous and chlorine.

Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates

  • Kim, Do-Young;Kim, Hyung-Woo;Chung, Moon-Gyu;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.87-97
    • /
    • 2007
  • Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.

전기방사에 의한 미생물 합성 생분해성 고분자 섬유의 Oil 흡수 (Oil Absorbencies of Fibers of Biodegradable and Microbial Polymers Prepared by Electrospinning Method)

  • 정의습;이원기;박찬영;민성기;장성호
    • 한국환경과학회지
    • /
    • 제22권2호
    • /
    • pp.243-249
    • /
    • 2013
  • Fibers of microbial polyesters, poly(3-hydroxy butyrate) (PHB) and poly(3-hydroxy butyrate-co-3-hydroxy valerate) (HB-co-HV) were prepared by electrospinning method. The obtained fibers were evaluated by differential scanning calorimetry, scanning electron microscopy, and oil absorption. The formation of fibers was strongly dependent on a concentration of solution. At a low concentration, the fibers contained beads which is from aggregation of polymer due to short evaporation time. The fine fibers with $2-5{\mu}m$ diameter were obtained at 20 wt% concentration. The contact angle measurement showed that the fiber had higher water contact angle than the film due to the lotus-like effect. Oil absorbency showed that the fiber had higher than the film. Specially, the HB-co-HV fiber which was spinned from 20 wt% absorbed 65% oil which is much higher than that of a normal polypropylene-based oil paper.

Isolation of Pseudomonas putida BM01 Accumulating High Amount of $PHA_{MCL}$

  • Song, Jae-Jun;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.126-133
    • /
    • 1994
  • A Pseudomonas putida strain able to accumulate high amount of polyesters of medium-chain-length 3-hydroxyalkanoic acids ($PHA_{MCL)$) was isolated from soil in a landfill site using an enrichment technique. Culture condition of the isolated strain for polyester production in a one-step culture was optimized in a mineral-salts medium against pH and concentrations of ammonium sulfate, carbon source(e.g., octanoate), and phosphate. The optimal values for maximal cell growth and PHA accumulation were: pH; 7$\sim$8, $(NH_4)_2SO_4$; 8 mM, octanoate; 40 mM. The optimum temperature was in the range of $20\sim30^{\circ}C$, which was rather broader than in other bacteria. Cell growth was strongly inhibited by the phosphate limitation to less than 1 mM. An increase of phosphate concentration above 1 mM showed little effect on cell growth and polyester accumulation. When the strain was grown on octanoate under this optimized condition it produced 3.4 g dry biomass per liter and yielded 1.7 g PHA per liter amounting to 53 wt% of dry cells. The monomer units composing the polyester synthesized from octanoate were 3-hydroxyoctanoate (3HO), 3-hydroxycaproate (3HC), and 3-hydroxybutyrate (3HB) (85:13:2, mole ratio). Other low linear $C_3\simC_{10}$ monocarboxylic acids were also tested for polyester production.

  • PDF

파이로포스포릭 락톤 변성 폴리에스터를 함유한 폴리우레탄 도료의 물성 및 난연 효과 (Physical Properties and Flame-Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters)

  • 정동진;김성래;박형진;박홍수;김승진
    • 폴리머
    • /
    • 제27권3호
    • /
    • pp.169-175
    • /
    • 2003
  • 무독성의 반응형 난연 도료를 제조할 목적으로 모체수지 1개의 구조단위 속에 2개의 인산기를 보유한 파이로포스포릭 락톤 변성 폴리에스터 (PATT)를 합성하고, PATT에 이소시아네이트인 toluene diisocyanate-isocyanurate를 상온경화시켜 2성분계 폴리우레탄 난연 도료(PIPUC)를 제조하였다. PIPUC로서 도막제작 후 비난연 도료와의 도막물성을 비교한 결과 난연 성분 도입에 따른 난연 도료의 물성이 저하되지 않음을 알았다. 난연성 시험 중 45$^{\circ}$ Meckel burner 법에서는 탄화길이가 3.1~4.4 cm를, LOI법에서는 LOI 27~30%를 각각 나타냄으로써 양호한 난연 효과를 보여주었고, SEM에 의한 표면 도막을 관찰한 결과 도막의 결함이나 상분리 현상이 생기지 않음을 관찰하였다.