Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application

이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용

  • Lee, Sang-Hyun (Department of Microbial Engineering, Konkuk University) ;
  • Park, Tae-Joon (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 이상현 (건국대학교 미생물공학과) ;
  • 박태준 (연세대학교 화공생명공학과)
  • Received : 2010.09.04
  • Accepted : 2010.10.05
  • Published : 2010.10.31

Abstract

Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applications such as tissue engineering, regenerative medicine, drug-delivery systems, and biosensors, because of their inherent biocompatibility and biodegradability. However, the insolubility of unmodified biopolymers in most organic solvents has limited the applications of biopolymer-based materials and composites. Ionic liquids (ILs) are good solvents for polar organic, nonpolar organic, inorganic and polymeric compounds. Biopolymers such as cellulose, chitin/chitiosan, silk, and DNA can be fabricated from ILs into films, membranes, fibers, spheres, and molded shapes. Various biopolymer/biopolymer and biopolymer/synthetic polymer composites also can be prepared by co-dissolution of polymers into IL mixtures. Heparin/biopolymer composites are especially of interest in preparing materials with enhanced blood compatibility.

Keywords

References

  1. Khor, E. and L. Lim (2003) Implantable applications of chitin and chitosan. Biomaterials. 24: 2339-2349. https://doi.org/10.1016/S0142-9612(03)00026-7
  2. Schiffman, J. D. and C. L. Schauer (2008) A Review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48: 317-352. https://doi.org/10.1080/15583720802022182
  3. Lee, S. H., M. Miyauchi, J. S. Dordick, and R. J. Linhardt (2010) Preparation of biopolymer-based materials using ionic liquids for the biomedical application. pp. 115-134. In: S. V. Malhotra (ed.) Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology. ACS symp. Ser. Oxford University Press, USA.
  4. Brown, R. M. (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J. Polym. Sci. Pol. Chem. 42: 487-495. https://doi.org/10.1002/pola.10877
  5. Steinbüchel, A. and R. H. Marchessault (2005) Biopolymers for Medical and Pharmaceutical Applications. pp. 329-382. Wiley-VCH: GmbH&Co.KGaA, Weinheim, Germany.
  6. Yamanaka, S., K. Watanabe, and Y. Suzuki (1990) Hollow microbial cellulose, process for preparation thereof. and artificial blood vessel formed of said cellulose. European Patent 0396344A2.
  7. Eisele, S., H. P. T. Ammon, R. Kindervater, A. Grobe, and W. Gopel (1994) Optimized biosensor for whole blood measurements using a new cellulose based membrane. Biosens. Bioelectro. 9: 119-124. https://doi.org/10.1016/0956-5663(94)80102-9
  8. Rosenau, T., A. Potthast, I. Adorjan, A. Hofinger, H. Sixta, H. Firgo, and P. Kosma (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO). Cellulose 9: 283-291. https://doi.org/10.1023/A:1021127423041
  9. Strlic, M. and J. Kollar (2003) Size exclusion chromatography of cellulose in LiCl/N,N-dimethylacetamide. J. Biochem. Biophys. Methods 56: 265-279. https://doi.org/10.1016/S0165-022X(03)00064-2
  10. Swatloski, R. P., S. K. Spear, J. D. Holbrey, and R. D. Rogers (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124: 4974-4975. https://doi.org/10.1021/ja025790m
  11. Yan, L. and K. Ishihara (2008) Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. J. Polym. Sci. Part A: Polym. Chem. 46: 3306-3313. https://doi.org/10.1002/pola.22670
  12. Chow, K. S., E. Khor, E., and A. Wan (2001) Porous chitin matrices for tissue engineering: fabrication and in vitro cytotoxic assessment. J. Polym. Res. 8: 27-35. https://doi.org/10.1007/s10965-006-0132-x
  13. Uragami, T., K. Kurita, and T. Fukamizo (2001) Chitin and chitosan in life Science. pp. 27-320. Kodansha Scientific Ltd., Tokyo, Japan.
  14. Wu, Y., T. Sasaki, S. Irie, and K. Sakurai (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 49: 2321-2327. https://doi.org/10.1016/j.polymer.2008.03.027
  15. Linhardt, R. J. (1991) Heparin: An important drug enters its seventh decade. Chem. Indus. 2: 45-50.
  16. Linhardt, R. J. and N. S. Gunay (1999) Production and Chemical processing of low molecular weight heparins. Sem. Thromb. Hem. 25: 5-16. https://doi.org/10.1055/s-2007-996417
  17. Murugesan, S., J. Xie, J., and R. J. Linhardt (2008) Immobilization of heparin-approaches and applications. Curr. Top. Med. Chem. 8: 80-100. https://doi.org/10.2174/156802608783378891
  18. Park, T. J., S. Murugesan, and R. J. Linhardt (2010) Cellulose composites prepared using ionic liquids (ILs)- Blood compatibility to batteries. pp. 133-152. In: K. Edgar, T. Heinze, and C. Buchanan (eds.) Polysaccharide Materials. ACS symp. Ser. Oxford University Press, USA.
  19. Murugesan, S., T. J. Park, H. C. Yang, S. Mousa, and R. J. Linhardt (2006) Nano-based neoproteoglycans - Blood compatible carbon nanotubes. Langmuir 22: 3461-3463. https://doi.org/10.1021/la0534468
  20. Li, Y., K. G. Neoh, L. Cen, and E. T. Kang, (2003) Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnol. Bioeng. 84: 305-313. https://doi.org/10.1002/bit.10757
  21. Oliveira, G. B., L. B. Carvalho, and M. P. C. Silva (2003) Properties of carbodiimide treated heparin. Biomaterials 24: 4777-4783. https://doi.org/10.1016/S0142-9612(03)00376-4
  22. Phillips, D. M., L. F. Drummy, D. G. Conrady, D. M. Fox, R. R. Naik, M. O. Stone, P. C. Trulove, H. C. De Long, and R. A. Mantz (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J. Am. Chem. Soc. 126: 14350-14351. https://doi.org/10.1021/ja046079f
  23. Phillips, D. M., L. F. Drummy, R. R. Naik, H. C. De Long, D. M. Fox, P. C. Trulove, and R. A. Mantz, R. A. (2005) Regenarated silk fiber wet spinning from an ionic liquid solution. J. Mater. Chem. 15: 4206-4208. https://doi.org/10.1039/b510069k
  24. Gupta, M. K., S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, R. R. Naik (2007) Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir 23: 1315-1319. https://doi.org/10.1021/la062047p
  25. Sheldon, R. A., R. M. Lau, M. J. Sorgedrager, and F. van Rantwijk (2002) Biocatalysis in ionic liquids. Green Chem. 4: 147-151. https://doi.org/10.1039/b110008b
  26. Freemantle, M. (1998) Designer solvents - Ionic liquids may boost clean technology development. Chem. Eng. News 76: 32-37.
  27. Lee S. H., T. J. Simmons, T. J. Park, M. Miyauchi, S. S. Bale, R. Pangule, J. Miao, J. Bult, J. G. Martin, J. S. Dordick, and R. J. Linhardt (2010) Preparation of synthetic wood composite using ionic liquid. Wood Sci. Technol. in press.
  28. El Seoud, O. A., A. Koschella, L. C. Fidale, S. Dorn, S., and T. Heinze (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromol. 8: 2629-2647. https://doi.org/10.1021/bm070062i
  29. Mantz, R. A., D. M. Fox, J. M. Green, P. A. Fylstra, H. C. De Long, and P. C. Trulove (2007) Dissolution of biopolymers using ionic liquids. Z. Naturforsch. A.-J. Phys. Sci. 62: 275-280.
  30. Chheda, J. A. and J. A. Dumesic (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomassderived carbohydrates. Catal. Today. 123: 59-70. https://doi.org/10.1016/j.cattod.2006.12.006
  31. Murugesan, S. and R. J. Linhardt (2005) Ionic liquids in carbohydrate chemistry - current trends and future directions. Curr. Org. Synth. 2: 437-451. https://doi.org/10.2174/157017905774322640
  32. Liebert, T. and T. Heinze. (2008) Interactions of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose Biores. 3: 576-601.
  33. Moulthrop, J. S., R. P. Swatloski, G. Moyna, and R. D. Rogers (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem. Commun. 1557-1559.
  34. Heinze, T., K. Schwikal, and S. Barthel (2005) Ionic Liquids as Reaction Medium in Cellulose Functionalization. Macromol. Biosci. 5: 520-525. https://doi.org/10.1002/mabi.200500039
  35. Ren, Q., J. Wu, J. Zhang, and J. S. He (2003) Synthesis of 1-allyl,3-methylimidazolium-based room-temperature ionic liquid and preliminary study of its dissolving cellulose. Acta Polym. Sin. 448-451.
  36. Mikkola, J. P., A. Kirilin, J. C. Tuuf, A. Pranovich, B. Holmbom, L. M. Kustov, D. Y. Murzin, and T. Salmi (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem. 9: 1229-1237. https://doi.org/10.1039/b708533h
  37. Fukaya, Y., A. Sugimoto, and H. Ohno (2006) Superior solubility of polysaccharides in low viscosity, polar and halogen-free 1,3-dialkylimidazolium formates. Biomacromol. 7: 3295-3297. https://doi.org/10.1021/bm060327d
  38. Fukaya, Y., K. Hayashi, M. Wada, and H. Ohno (2008) Cellulose dissolution with polar ionic liquids under mild conditions. Green Chem. 10: 44-46. https://doi.org/10.1039/b713289a
  39. Zhao, H., G. A. Baker, Z. Y. Song, O. Olubajo, T. Crittle, D. Peters, (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 10: 696-705. https://doi.org/10.1039/b801489b
  40. Kosan, B., C. Michels, and F. Meister (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15: 59-66. https://doi.org/10.1007/s10570-007-9160-x
  41. Barthel, S. and T. Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 8: 301-306. https://doi.org/10.1039/b513157j
  42. Lee S. H., T. V. Doherty, R. J. Linhardt, and J. S. Dordick (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102: 1368-1376. https://doi.org/10.1002/bit.22179
  43. Sun N., M. Rahman, Y. Qin, M. L. Maxim, H. Rodriquez, and R. D. Rogers (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl- 3-methylimidazolium acetate. Green Chem. 11: 646-655. https://doi.org/10.1039/b822702k
  44. Xie, H. B., S. B. Zhang, and S. H. Li (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of $CO_2$. Green Chem. 8: 630-633. https://doi.org/10.1039/b517297g
  45. Lu, X. B., J. Q. Hu, X. Yao, X.; Z. P. Wang, J. H. Li (2006) Composite system based on chitosan and roomtemperature ionic liquid: Direct electrochemistry and electrocatalysis of hemoglobin. Biomacromol. 7: 975-980. https://doi.org/10.1021/bm050933t
  46. Lu, X. B.; Q. Zhang, L. Zhang, and J. H. Li, (2006) Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem. Commun. 8: 874-878. https://doi.org/10.1016/j.elecom.2006.03.026
  47. Wang, Q., H. Tang, Q. J. Me, L. Tan, Y. Y. Zhang, B. Li, and S. Z. Yao (2007) Room-temperature ionic liquids/ multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochimi. Acta 52: 6630-6637. https://doi.org/10.1016/j.electacta.2007.04.057
  48. Murugesan, S., J. M. Wiencek, R. X. Ren, and R. J. Linhardt (2006) Benzoate-based room temperature ionic liquids - Thermal properties and glycosaminoglycan dissolution. Carbohyd. Polym. 63: 268-271. https://doi.org/10.1016/j.carbpol.2005.09.022
  49. Park, T. J., M. Weiwer, X. J. Yuan, S. N. Baytas, E. M. Munoz, S. Murugesan, and R. J. Linhardt (2007) Glycosylation in room temperature ionic liquid using unprotected and unactivated donors. Carbohyd. Res. 342: 614. https://doi.org/10.1016/j.carres.2006.11.022
  50. Viswanathan, G., S. Murugesan, V. Pushparaj, O. Nalamasu, P. M. Ajayan, and R. J. Linhardt (2006) Preparation of biopolymer fibers using electrospinning from room temperature ionic liquids. Biomacromolecules 7: 415. https://doi.org/10.1021/bm050837s
  51. Yan, R., F. Zhao, J. Li, F. Xiao, S. Fan, and B. Zeng (2007) Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films. Electrochimi. Acta 52: 7425-7431. https://doi.org/10.1016/j.electacta.2007.06.039
  52. Turner, M. B., S. K. Spear, J. D. Holbrey, and R. D. Rogers (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromol. 5: 1379-1384. https://doi.org/10.1021/bm049748q
  53. Turner, M. B., S. K. Spear, J. D. Holbrey, D. T. Daly, and R. D. Rogers (2005) Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromol. 6: 2497-2502. https://doi.org/10.1021/bm050199d
  54. Poplin, J. H., R. P. Swatloski, J. D. Holbrey, S. K. Spear, A. Metlen, M. Gratzel, M. K. Nazeeruddin, and R. D. Rogers (2007) Sensor technologies based on a cellulose supported platform. Chem. Commun. 2025-2027.
  55. Bagheri, M., H. Rodriguez, R. P. Swatloski, S. K. Spear, D. T. Daly, and R. D. Rogers (2008) Ionic Liquid- Based Preparation of Cellulose-Dendrimer Films as Solid Supports for Enzyme Immobilization. Biomacromol. 9: 381-387. https://doi.org/10.1021/bm701023w
  56. Tsioptsias, C. and C. Panayiotou (2008) Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions. Carbohydr. Polym. 74: 99-105. https://doi.org/10.1016/j.carbpol.2008.01.022
  57. Pushparaj V. L., S. M. Manikoth, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, and P. M. Ajayan, (2007) Flexible Nanocomposite Thin Film Energy Storage Devices. PNAS 104: 13574-13577. https://doi.org/10.1073/pnas.0706508104
  58. Murugesan, S., S. Mousa, A. Vijayaraghavan, P. M. Ajayan, and R. J. Linhardt (2006) Ionic liquid derived blood compatible composite membranes for kidney dialysis. J. Biomed. Mater. Res. B: Appl. Biomater. 79: 298-304.
  59. Park, T. J., S. H. Lee, T. J. Simmons, J. G. Martin, S. Mousa, E. A. Snezhkova, V. V. Sarnatskaya, S. G. Nikolaev, and R. J. Linhardt (2008) Biocompatible Activated Charcoal Composites For Drug Detoxification Prepared Using Room Temperature Ionic Liquids. Chem. Commun. 5022-5024.
  60. Chandy, T. and C. P. Sharma, (1998) Activated charcoal microcapsules and their applications. J. Biomater. Appl. 13: 128-157. https://doi.org/10.1177/088532829801300204
  61. Perepelkin, K. E. (2007) Coating composition, weld parameter and consumable conditioning effects on weld metal composition in shielded metal arc welding. Fibre Chem. 39: 163-172. https://doi.org/10.1007/s10692-007-0032-9
  62. Zhang, H., Z. G. Wang, and Z. N. Zhang (2007) Regenerated cellulose/Multiwalled carbonnanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-Allyl-3-methylimidazolium Chloride. Adv. Mater. 19: 698-704. https://doi.org/10.1002/adma.200600442
  63. Sun, N., R. P. Swatloski, and M. L. Maxim (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J. Mater. Chem. 18: 283-290. https://doi.org/10.1039/b713194a
  64. Zhao, T., H. Wang, and Y. Zhang (2008) The preparation and characterization of poly(m-phenyleneisophthalamide) fibers using ionic liquids Int. J. Mol. Sci. 8: 680-685.
  65. Zhang, Y. M., X. P. Tu, and W. Liu (2008) Diffusion dynamics of ionic liquids during the coagulation of solution spinning for acrylic fibers. Polym. Eng. Sci. 48: 184-190. https://doi.org/10.1002/pen.20951
  66. Lee, C. K., S. R. Shin, S. H. Lee, H. H. Jeon, I. So, T. M. Kang, S. I. Kim, J. Y. Mun, S. S. Han, G. M. Spinks, G. G. Wallace, and S. J. Kim, (2008) DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. Angew. Chem. Int. Ed. 47: 2470-2474. https://doi.org/10.1002/anie.200704600
  67. Xie, H. B., S. H. Li, and S. B. Zhang (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem. 7: 606-608. https://doi.org/10.1039/b502547h
  68. Lee, J., R. M. Broughton, and S. D. Worley (2008) Antimicrobial polymeric materials; Cellulose and m-aramid composite fibers. AATCC Review 8: 43-48.
  69. Sill, T. J. and H. A. von Recum (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomater. 29: 1989-2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
  70. Rutledge, G. C., S. V. Fridrikh (2007) Formation of Fibers by Electrospinning. Adv. Drug Delivery Rev. 59: 1384-1391. https://doi.org/10.1016/j.addr.2007.04.020
  71. Costolo, M. A., J. D. Lennhoff, and R. Pawle (2008) A nonlinear system model for electrospinning sub-100 nm polyacrylonitrile fibres. Nanotechnology 19: 035707. https://doi.org/10.1088/0957-4484/19/03/035707
  72. Zhang, C. X., X. Y. Yuan, and L. L. Wu (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41: 423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027
  73. Xu, S. S., J. Zhang, and A. H. He (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49: 2911-2917. https://doi.org/10.1016/j.polymer.2008.04.046
  74. Sui S., J. Yuan J., W. Yuan, and M. Zhou (2008) Preparation of Cellulose Nanofibers/Nanoparticles via Electrospray. Chem. Lett. 37: 114-115. https://doi.org/10.1246/cl.2008.114
  75. Yang, W., H. Yu, and M. F. Zhu. (2006) Poly (mphenylene isophthalamide) ultrafine fibers from an ionic liquid solution by dry-jet-wet-electrospinning. J. Macromol. Sci. Part B: Phys. 45: 573-579. https://doi.org/10.1080/00222340600770129
  76. Jia, J. B., B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li, and S. J. Dong (2002) A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem. 74: 2217-2229. https://doi.org/10.1021/ac011116w
  77. Simionsecu, C., M. Popa, and S. Dumitru (1987) Immobilization of Tnvertase on the Diazonium Salt of 4-Aminobenzoylcellulose. Biotechnol. Bioeng. 29: 361-365. https://doi.org/10.1002/bit.260290312
  78. Iwasaki, Y., C. Nakagawa, M. Ohtomi, and K. Akiyosi (2004) Novel biodegradable polyphosphate cross-linker for making biocompatible hydrogel. Biomacromol. 5: 1110-1115. https://doi.org/10.1021/bm049961m
  79. Buzzeo, M. C., R. G. Evans, and R. G. Compton (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry-A review. Chem. Phys. Chem. 5: 1106-1120. https://doi.org/10.1002/cphc.200301017
  80. Zhao, F., X. E. Wu, M. K. Wang, Y. Liu, L. X. Gao, and S. J. Dong (2007) Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Anal. Chem. 76: 4960-4967.
  81. Li, J. W., J. J. Yu, F. Q. Zhao, and B. Z. Zeng (2007) Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal. Chem. 587: 33-40.
  82. Sun, W., D. Wang, R. Gao, and K. Jiao (2007) Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a [BMIM][$PF_6$] modified carbon paste electrode. Electrochem. Commun. 9: 1159-1164. https://doi.org/10.1016/j.elecom.2007.01.003
  83. Sun, W., D. Wang, D., J. Zhong, and K. Jiao (2008) Electrocatalytic activity of hemoglobin in sodium alginate/$SiO_2$ nanoparticle/ionic liquid [BMIM][$PF_6$] composite film. J. Solid State Electrochem. 12: 655-661. https://doi.org/10.1007/s10008-007-0395-0
  84. Ding, C., M. Zhang, F. Zhao, and S. Zhang (2008) Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid. Anal. Biochem. 378: 32-37. https://doi.org/10.1016/j.ab.2008.03.036