• Title/Summary/Keyword: Polyester resin

Search Result 244, Processing Time 0.028 seconds

AN EXPERIMENTAL STUDY ON THE MORPHOLOGIC CHANGES OF DIFFERENT SIMULATED CANALS ACCORDING TO THE PREPARATION METHOD (근관형성방법(根管形成方法)에 따른 모의근관형태(模擬根管形態)의 변화(變化)에 대(對)한 실험적(實驗的) 연구(硏究))

  • Hwang, Ho-Keel;Cho, Jae-O;Cho, Young-Kgon
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.161-171
    • /
    • 1988
  • The purpose of this study was to examine the morphological changes of different simulated canals according to the preparation procedures. With the use of clear casting resin, simulated straight and curved canals were created so that canal preparation procedures could be directly visualized and compared. Thirty clear polyester casting resin blocks which contained four simulated canals divided into three groups; Group A($0^{\circ}$), Group B($15^{\circ}$), and Group C($30^{\circ}$). In each block, 3 canals were prepared different preparation techniques, which were conventional method, step-back method, and giromatic filing. But, one canal was not prepared as a control group. The results were as follows: 1. There was no difference on canal shape among three canal preparation methods in straight canals (Group A). 2. When conventional method and Giromatic filing were used in curved canals (Group B, C), elbow, zip and hour-glass shape were formed in apical third. 3. When conventional method and Giromatic filing were used in curved canals (Group B, C), tear-drop appearance developed at the site of the canal exit in curved canals. 4. In curved canals (Group B, C), file tend to straighten within the canal. 5. There was no difference on canal shape according to curved angle in step-back method (p > 0.1). But there was significant difference on canal shape according to curved angle in conventional method and Giromatic filing (p < 0.001). 6. Step-back method was significantly more effective than conventional method and Giromatic preparation in morphologic aspects of apical third of original canals.

  • PDF

Laminate Weight Optimization of Composite Ship Structures based on Experimental Data (FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계)

  • Oh, Daekyun;Han, Zhiqiang;Noh, Jackyou;Jeong, Sookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

A Study on Technology of Waterproofing of the Concrete Structure Which Used Soft FRP Resin and Square Groove Cutting Technique (연질 FRP 수지와 정방형 홈 컷팅 기술을 이용한 콘크리트 구조물의 방수기술에 관한 연구)

  • Lee, Hyung-Jun;Choi, Sung-Min;Kim, Sung-Sik;Ahn, Sang-Ku;Cho, Ah-Hyung;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.597-600
    • /
    • 2008
  • In this study the reason which researches the feature of the exposure type waterproofing it uses the technique of the soft FRP it uses the soft unsaturated polyester and the square groove cutting technique with respects and solves the interface separate problem because of the rigid FRP it is used with the repairs and retrofit materials it is caused by in adhesion of concrete insufficiency. The feature of this technique was the dispersion and the reinforcement of the fatigue stress due to the integration behavior and the reinforcement due to the glass-fibre of the concrete due to the soft FRP resin and, it investigated the crack appearance confrontation of concrete and the cohesion stability of the concrete due to the square groove cutting technique with importance. The result of research when it applies the soft FRP with the exposure type waterproofing, is judged with the fact that it will be able to expect a bulge resistance confrontation and creak confrontation ability and cohesion stability improvement.

  • PDF

Engineering properties of permeable polymer concrete for pavement using powdered waste glass as filler (폐유리분말을 충전재로 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Kim, Tae-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.145-151
    • /
    • 2011
  • This study was performed to evaluate the void ratio, compressive and flexural strength, and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The void ratio and permeability coefficient of permeable concrete for pavement was decreased with increasing the powdered waste glass, respectively. The compressive strength and flexural strength was increased with increasing the powdered waste glass, respectively. In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Therefore, powdered waste glass and recycled coarse aggregate can be used for permeable polymer pavement.

Engineering Properties of Carbon Fiber and Glass Fiber Reinforced Recycled Polymer Concrete (탄소섬유 및 유리섬유로 보강한 재생 폴리머 콘크리트의 공학적 특성)

  • Noh, Jin Yong;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • This study was performed to evaluate engineering properties of carbon and glass fiber reinforced recycled polymer concrete. Fiber reinforced recycled polymer concrete were used recycled aggregate as coarse aggregate, natural aggregate as fine aggregate, $CaCO_3$ as filler, unsaturated polyester resin as binder, and carbon and glass fiber as fibers. The compressive and flexural strength of carbon fiber reinforced recycled polymer concrete were in the range of 68~81.5 MPa and 19.1~21.5 MPa at the curing 7days. Also, the compressive and flexural strength of glass fiber reinforced recycled polymer concrete were in the range of 69.4~85.1 MPa and 19~20.1 MPa at the curing 7days. Abrasion ratio of carbon and glass fiber reinforced recycled polymer concrete were decreased 21.6 % and 11.6 % by fiber content 0.9 %, respectively. After impact resistance test, drop numbers of initial and final fracture were increased with increase of fiber contents. Accordingly, carbon fiber and glass fiber reinforced recycled polymer concrete will greatly improve the hydraulic structures, underground utilities and agricultural structures.

The Characterization of Recycle PE/PET/TPE Blend with Compatibilizers (폐 PE/PET/TPE Blends 제조와 상용화에 따른 특성 분석)

  • Kim, Dong-Hyun;Hwang, In-Sung;Kim, Jeong-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.423-430
    • /
    • 2012
  • This study focused on the characterization of recycle PE/PET/TPE blend with compatibilizers. The heat resistance and impact strength of a weak point on PET/HDPE blend has been improved. TPE added polyester-based recycle heat-resistant properties to $150^{\circ}C$ showed more than $50^{\circ}C$ higher than HDPE added. Elastomer applied is a significant increase in the impact strength, and then it is possible to apply for safety materials in industries requiring heat-resistance and elasticity. Also using PET blend compatibilizer improves the strength of the polyolefin resin. The mechanical properties of recycle HDPE and PET blend has been greatly improved, and the reduction in the size of the dispersed phase by the addition of compatibilizers on morphology characteristics were observed uniformity becomes.

A Study on Fatigue Crack Propagation Behavior in Random Short-Fiber SMC Composites (비규칙 단섬유강화 SMC 복합재료의 피로균열 전파거동에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 1990
  • The SMC composite, now being considered in certain structural applications, is anticipated to experience repeated loading during service. Thus, understanding of the fatigue behavior is essential in proper use of the composite material. In this paper, using the SMC composite composed of E-glass chopped strand and unsaturated polyester resin three point bending fatigue tests are carried out to investigate the fatigue crack propagating behavior under various cyclic stresses and fatigue damage of various microcrack forms. The following results are obtained from this study; 1) Most of the total fatigue life of the SMC composite is consumed at the initial extension or the growth of the macroscopic crack. 2) A Paris' type power-law relationship between the crack propagation rate and stress intensity factor range is obtained, and the value of material constant m is much higher (m=9~11)than that of other metals. 3) In case of high cyclic stress the fatigue damage show high microcrack density and short crack length, but in case of low cyclic stress does it vice versa. 4) Fatigue damage is characterized by microcrack density, crack length and distribution of crack orientation.

  • PDF

Physical Properties and Flame-Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters (파이로포스포릭 락톤 변성 폴리에스터를 함유한 폴리우레탄 도료의 물성 및 난연 효과)

  • 정동진;김성래;박형진;박홍수;김승진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.169-175
    • /
    • 2003
  • Pyrophosphoric lactone modified polyester (PATT) containing two phosphorous functional groups in one unit structure was synthesized to prepare a non-toxic reactive flame-retardant coatings. Then the PATT was cured at room temperature with isocyanate, toluene diisocyanate-isocyanurate , to get a two-component polyurethane flame-retardant coatings (PIPUC). Comparing physical properties of the films of PIPUC with those of film of non-flame-retardant coatings, there was no deterioration observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by 45$^{\circ}$ Meckel burner method were 3.1∼4.4 cm and LOI values recorded 27∼30%. These results indicate that the coating prepared in this study is a good flame-retardant. The surface structure of coatings investigated with SEM does not show any defects and phase separation.

Preparation of Fine Silk Powder and It′s Application for Surface Modification (폐견사류의 미세분말화 및 표면 가공제 적용)

  • 이용우;이광길;여주홍;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • The purification, dissolution and powdering of stained waste silk obtained from weaving and dyeing process were studied for the surface modification of textile fabric and plastic materials. The whiteness of stained waste silk could be improved through degumming and bleaching with sodium hydrosulfite. The water-soluble fibroin solution can be obtained by dissoving the degummed waste silk in a boiling solution of 50% calcium chloride for 60 minutes. The salts and heavy metals contained in fibroin solution were removed by electric dialysis, wool fiber filtration and gel filtration chromatography. The fibroin powder was prepared by using a fine grinder after the alkali treatment for weakening the silk fiber. The fine fibroin powder of particle size around 30 ㎛ was obtained with a ultra fine-mill, while it was finer below 10 ㎛ with a ball-mill. The dissolved or powdered silk was applied to the surface of fabric with addition of the binder (a urethane resin). The moisture content of polyester and nylon fabrics treated with the silk solution was improved due to hygroscopic property of silk. The fine fibroin powder mixed with the binder ws coated on the surface of synthetic film by use of the air pressed sprayer. It was revealed that the hygroscopicity as well as the softness of fibroin powder coated film was much improved. Therefore, it is thought that the fine silk fibroin powder is applicable as an coating agent for the surface modification of plastic and synthetic leather.

  • PDF

Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash (석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • 성찬용;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF