• 제목/요약/키워드: Polyester resin

검색결과 244건 처리시간 0.026초

근관형성방법(根管形成方法)에 따른 모의근관형태(模擬根管形態)의 변화(變化)에 대(對)한 실험적(實驗的) 연구(硏究) (AN EXPERIMENTAL STUDY ON THE MORPHOLOGIC CHANGES OF DIFFERENT SIMULATED CANALS ACCORDING TO THE PREPARATION METHOD)

  • 황호길;조재오;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • 제13권1호
    • /
    • pp.161-171
    • /
    • 1988
  • The purpose of this study was to examine the morphological changes of different simulated canals according to the preparation procedures. With the use of clear casting resin, simulated straight and curved canals were created so that canal preparation procedures could be directly visualized and compared. Thirty clear polyester casting resin blocks which contained four simulated canals divided into three groups; Group A($0^{\circ}$), Group B($15^{\circ}$), and Group C($30^{\circ}$). In each block, 3 canals were prepared different preparation techniques, which were conventional method, step-back method, and giromatic filing. But, one canal was not prepared as a control group. The results were as follows: 1. There was no difference on canal shape among three canal preparation methods in straight canals (Group A). 2. When conventional method and Giromatic filing were used in curved canals (Group B, C), elbow, zip and hour-glass shape were formed in apical third. 3. When conventional method and Giromatic filing were used in curved canals (Group B, C), tear-drop appearance developed at the site of the canal exit in curved canals. 4. In curved canals (Group B, C), file tend to straighten within the canal. 5. There was no difference on canal shape according to curved angle in step-back method (p > 0.1). But there was significant difference on canal shape according to curved angle in conventional method and Giromatic filing (p < 0.001). 6. Step-back method was significantly more effective than conventional method and Giromatic preparation in morphologic aspects of apical third of original canals.

  • PDF

FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계 (Laminate Weight Optimization of Composite Ship Structures based on Experimental Data)

  • 오대균;;노재규;정숙현
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

연질 FRP 수지와 정방형 홈 컷팅 기술을 이용한 콘크리트 구조물의 방수기술에 관한 연구 (A Study on Technology of Waterproofing of the Concrete Structure Which Used Soft FRP Resin and Square Groove Cutting Technique)

  • 이형준;최성민;김성식;안상구;조아형;오상근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.597-600
    • /
    • 2008
  • 본 연구는 보수보강재료로 사용되고 있는 경질형 FRP의 문제점인 바탕면과의 부착력 부족에 의한 계면박리를 해결하고자 연질형의 불포화폴리에스테르 수지를 사용한 연질형 FRP와 바탕면에 정방형 홈("+"자형) 컷팅 기술을 이용한 노출형 방수공법의 특징을 중심으로 연구하고자 한다. 본 공법의 특징은 연질형 FRP 수지에 의한 콘크리트바탕면과의 일체화 거동과 유리섬유 보강에 의한 피로응력의 분산과 강도보강이며, 정방형 홈 컷팅 기술에 의한 바탕콘크리트의 균열발생 대응과 부착안전성 향상에 관하여 중점 고찰하였다. 연구결과 연질형 FRP를 노출방수층으로 적용 시 부풂 대응과 균열대응력 및 부착안전성 향상을 기대 할 수 있을 것으로 판단된다.

  • PDF

폐유리분말을 충전재로 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질 (Engineering properties of permeable polymer concrete for pavement using powdered waste glass as filler)

  • 성찬용;김태호
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.145-151
    • /
    • 2011
  • This study was performed to evaluate the void ratio, compressive and flexural strength, and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The void ratio and permeability coefficient of permeable concrete for pavement was decreased with increasing the powdered waste glass, respectively. The compressive strength and flexural strength was increased with increasing the powdered waste glass, respectively. In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Therefore, powdered waste glass and recycled coarse aggregate can be used for permeable polymer pavement.

탄소섬유 및 유리섬유로 보강한 재생 폴리머 콘크리트의 공학적 특성 (Engineering Properties of Carbon Fiber and Glass Fiber Reinforced Recycled Polymer Concrete)

  • 노진용;성찬용
    • 한국농공학회논문집
    • /
    • 제58권3호
    • /
    • pp.21-27
    • /
    • 2016
  • This study was performed to evaluate engineering properties of carbon and glass fiber reinforced recycled polymer concrete. Fiber reinforced recycled polymer concrete were used recycled aggregate as coarse aggregate, natural aggregate as fine aggregate, $CaCO_3$ as filler, unsaturated polyester resin as binder, and carbon and glass fiber as fibers. The compressive and flexural strength of carbon fiber reinforced recycled polymer concrete were in the range of 68~81.5 MPa and 19.1~21.5 MPa at the curing 7days. Also, the compressive and flexural strength of glass fiber reinforced recycled polymer concrete were in the range of 69.4~85.1 MPa and 19~20.1 MPa at the curing 7days. Abrasion ratio of carbon and glass fiber reinforced recycled polymer concrete were decreased 21.6 % and 11.6 % by fiber content 0.9 %, respectively. After impact resistance test, drop numbers of initial and final fracture were increased with increase of fiber contents. Accordingly, carbon fiber and glass fiber reinforced recycled polymer concrete will greatly improve the hydraulic structures, underground utilities and agricultural structures.

폐 PE/PET/TPE Blends 제조와 상용화에 따른 특성 분석 (The Characterization of Recycle PE/PET/TPE Blend with Compatibilizers)

  • 김동현;황인성;김정훈
    • 디지털융복합연구
    • /
    • 제10권10호
    • /
    • pp.423-430
    • /
    • 2012
  • 이 연구는 폐 PE/PET/TPE 상용화에 따른 특성에 초점을 맞추었다. 재활용 PET/HDPE blend의 단점인 내열특성과 충격강도 특성이 개선되었고, 내열특성은 polyester계 폐TPE를 첨가한 것이 HDPE가 첨가된것 보다 $50^{\circ}C$ 이상 높은 $150^{\circ}C$이상을 나타내었다. Elastomer의 적용으로 충격강도가 현저히 증가되어 내열 및 탄성이 요구되는 산업분야에 적용할 수 있는 안전소재로의 적용가능성을 확인할 수 있었다. 또한 상용화제를 이용하여 PET를 블렌드 함으로써 폴리올레핀계 수지의 강도를 향상시켰다. 폐HDPE와 폐PET blend의 기계적 물성이 크게 향상되었으며, morphology 특성에서도 상용화제의 첨가에 따라 분산상의 크기가 감소하고 균일해짐이 관찰되었다.

비규칙 단섬유강화 SMC 복합재료의 피로균열 전파거동에 관한 연구 (A Study on Fatigue Crack Propagation Behavior in Random Short-Fiber SMC Composites)

  • 김재동;고성위
    • 수산해양기술연구
    • /
    • 제26권2호
    • /
    • pp.204-212
    • /
    • 1990
  • The SMC composite, now being considered in certain structural applications, is anticipated to experience repeated loading during service. Thus, understanding of the fatigue behavior is essential in proper use of the composite material. In this paper, using the SMC composite composed of E-glass chopped strand and unsaturated polyester resin three point bending fatigue tests are carried out to investigate the fatigue crack propagating behavior under various cyclic stresses and fatigue damage of various microcrack forms. The following results are obtained from this study; 1) Most of the total fatigue life of the SMC composite is consumed at the initial extension or the growth of the macroscopic crack. 2) A Paris' type power-law relationship between the crack propagation rate and stress intensity factor range is obtained, and the value of material constant m is much higher (m=9~11)than that of other metals. 3) In case of high cyclic stress the fatigue damage show high microcrack density and short crack length, but in case of low cyclic stress does it vice versa. 4) Fatigue damage is characterized by microcrack density, crack length and distribution of crack orientation.

  • PDF

파이로포스포릭 락톤 변성 폴리에스터를 함유한 폴리우레탄 도료의 물성 및 난연 효과 (Physical Properties and Flame-Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters)

  • 정동진;김성래;박형진;박홍수;김승진
    • 폴리머
    • /
    • 제27권3호
    • /
    • pp.169-175
    • /
    • 2003
  • 무독성의 반응형 난연 도료를 제조할 목적으로 모체수지 1개의 구조단위 속에 2개의 인산기를 보유한 파이로포스포릭 락톤 변성 폴리에스터 (PATT)를 합성하고, PATT에 이소시아네이트인 toluene diisocyanate-isocyanurate를 상온경화시켜 2성분계 폴리우레탄 난연 도료(PIPUC)를 제조하였다. PIPUC로서 도막제작 후 비난연 도료와의 도막물성을 비교한 결과 난연 성분 도입에 따른 난연 도료의 물성이 저하되지 않음을 알았다. 난연성 시험 중 45$^{\circ}$ Meckel burner 법에서는 탄화길이가 3.1~4.4 cm를, LOI법에서는 LOI 27~30%를 각각 나타냄으로써 양호한 난연 효과를 보여주었고, SEM에 의한 표면 도막을 관찰한 결과 도막의 결함이나 상분리 현상이 생기지 않음을 관찰하였다.

폐견사류의 미세분말화 및 표면 가공제 적용 (Preparation of Fine Silk Powder and It′s Application for Surface Modification)

  • 이용우;이광길;여주홍;김종호
    • 한국잠사곤충학회지
    • /
    • 제43권1호
    • /
    • pp.41-48
    • /
    • 2001
  • The purification, dissolution and powdering of stained waste silk obtained from weaving and dyeing process were studied for the surface modification of textile fabric and plastic materials. The whiteness of stained waste silk could be improved through degumming and bleaching with sodium hydrosulfite. The water-soluble fibroin solution can be obtained by dissoving the degummed waste silk in a boiling solution of 50% calcium chloride for 60 minutes. The salts and heavy metals contained in fibroin solution were removed by electric dialysis, wool fiber filtration and gel filtration chromatography. The fibroin powder was prepared by using a fine grinder after the alkali treatment for weakening the silk fiber. The fine fibroin powder of particle size around 30 ㎛ was obtained with a ultra fine-mill, while it was finer below 10 ㎛ with a ball-mill. The dissolved or powdered silk was applied to the surface of fabric with addition of the binder (a urethane resin). The moisture content of polyester and nylon fabrics treated with the silk solution was improved due to hygroscopic property of silk. The fine fibroin powder mixed with the binder ws coated on the surface of synthetic film by use of the air pressed sprayer. It was revealed that the hygroscopicity as well as the softness of fibroin powder coated film was much improved. Therefore, it is thought that the fine silk fibroin powder is applicable as an coating agent for the surface modification of plastic and synthetic leather.

  • PDF

석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질 (Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash)

  • 성찬용;정현정
    • 한국농공학회지
    • /
    • 제38권4호
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF