• Title/Summary/Keyword: Poly-Peptide

Search Result 57, Processing Time 0.035 seconds

Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes

  • Sang-Hyun Kim;Ha-Eun Park;Seong-Un Jeong;Jun-Hyeok Moon;Young-Ran Lee;Jeong-Ki Kim;Hyunseok Kong;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.44.1-44.15
    • /
    • 2021
  • Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.

Characterization of Recombinant PolyG-Specific Lyase from a Marine Bacterium, Streptomyces sp. M3 (해양세균 Streptomyces sp. M3로 부터 얻은 재조합 polyG-specific lyase의 특성)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1582-1588
    • /
    • 2010
  • A new alginate lyase gene of marine bacterium Streptomyces sp. M3 had been previously cloned in pColdI vector and transformed into E. coli BL21 (DE3). In this study, M3 lyase protein without signal peptide was overexpressed by induction with IPTG and purified with Ni-Sepharose affinity chromatography. The absorbance at 235 nm of the reaction mixture and TLC analysis showed that M3 alginate lyase was a polyG-specific lyase. When M3 lyase was assayed with substrate for 10 min, optimum pH and optimum temperature were pH 9 and $60^{\circ}C$. For the effect of 1mM metal ion on M3 lyase activity, $Ca^{++}$ and $Mn^{++}$ ions increased the alginate degrading activity by two-fold, whereas $Hg^{++}$ and $Zn^{++}$ ions inhibited the lyase activity completely. $Mg^{++}$, $Co^{++}$, $Na^+$, $K^+$, and $Ba^{++}$ did not show any strong effects on alginate lyase activity.

Synthesis and Catalytic Properties of Imidazole-Functionalized Poly(propylene imine)Dendrimers

  • Baker, Lane A.;Sun, Li;Crooks, Richard M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.647-654
    • /
    • 2002
  • The synthesis and characterization of third- and fifth-generation poly(propylene imine) dendrimers terminated with imidazole moieties is reported. Functionalization was achieved using simple peptide coupling reagents. These materials were characte rized by MALDI-MS, NMR, and titration. The use of these endgroup-functionalized dendrimers as catalysts for the hydrolysis of 2,4-dinitrophenyl acetate is described. Molecular simulations provide a basis for interpreting the catalytic data.

Comparison between Basic and Inverse Dual Drug and Peptide-coated Stents in a Porcine Restenosis Model

  • Jang, Eun-Jae;Lee, So-Youn;Bae, In-Ho;Park, Dae Sung;Jeong, Myung Ho;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.502-508
    • /
    • 2020
  • Dual drug-eluting stents (DES) is a primary treatment method for coronary arterial diseases in current interventional cardiology practice. However, their pathological results according to the sequence of coating of drugs have not been reported yet. The peptide-dopamine dissolved in acetonitrile was coated onto the Chonnam National University Hospital (CNUH) stent using an electrospinning coating machine. For secondary coating (e.g., sirolimus coating, designated as SPS), sirolimus (SRL) and poly lactic-glycolic acid (PLGA) were mixed in tetrahydrofuran (THF), and the solution was then coated on the CNUH stent that had underwent the primary peptide coating using an electrospinning and spray technique. Next, the peptide-dopamine was coated on the SRL-PLGA coated stent (PSS). In this study, it was confirmed that endothelialization was promoted without being significantly affected by the coating order (SPS or PSS). The sequence of drug and peptide coating may affect the development of restenosis and PSS was effective in the prevention of restenosis compared to that of using SPS.

Molecular cloning and expression analysis of an interferon stimulated gene 15 from rock bream Oplegnathus fasciatus

  • Kim, Ju-Won;Kwon, Mun-Gyeong;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Baeck, Gun-Wook;Kim, Mu-Chan;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.23 no.2
    • /
    • pp.177-187
    • /
    • 2010
  • The Interferon stimulated gene 15 (ISG15) is strongly induced in many cell types by IFNs, viral infections, and double-stranded RNA (poly I:C). The ISG15 homologue cDNA was isolated from the rock bream LPS stimulated leukocyte cDNA library. The rock bream ISG15 homologue was found to consist of 833 bp encoding 157 amino acid residues. Compared with other known ISG15 peptide sequences, the most conserved regions of the rock bream ISG15 peptide were found to be the tandem ubiquitin-like domains and a C-terminal LRLRGG conjugating motif, characteristic of mammalian and non-mammalian ISG15 proteins. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the ISG15 sequence of rock bream and that of Atlantic salmon, Atlantic cod, northern snake head, black rockfish and olive flounder. The expression of the rock bream ISG15 molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following poly I:C stimulation, with a peak at 3 h post-stimulation. The rock bream ISG15 gene was predominantly expressed in the PBLs, spleen and gill.

Functional Experessions of Endogenous Dipeptide Transporter and Exogenous Proton/Peptide Cotransporter in Xenopus Oocytes

  • Oh, Doo-Man;Amidon-Gordon-L.;Sadee-Wolfgang
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 1995
  • It is essential to clone the preptide transporter in order to obtain better understanding of its molecular structure, regulation, and substrate specificity. Characteristics of an endogenous peptide transporter in oocytes were studied along with expression of an exogenous protor/peptide cotransporter from rabbit intestine. And further efforts toward cloning the transporter were performed. The presence of an endogenous peptide transporter was detected in Xenopus laevis oocytes by measuring the uptake of $0.25/{mu}M(10{\;}{\mu}Ci/ml)[^3H]$-glycylsarcosine (Gly-Sar) at pH 5.5 with or without inhibitors. Yptake of Gly-Sae in oocytes was significantly inhibited by $25{\mu}M$ glycine nd sarcosine. This result suggests that a selective transporter is involved in the endogneous uptake of dipeptides. Collagenase treatment of oocytes used to strip oocytes from ovarian follicles did not affect the Gly-Sar uptake. Changing pH from 5.5 to 7.5 did not affect the Gly-Sae uptake significantly, suggesting no depedence of the endogenous transporter on a transmembrane proton gradient. An exogenous $H^+/pep-tide$ contransported was expressed after microinjection of polyadenylated messenger ribonucleic acid $[poly(A)^+ -mRNA]$ obtained from rabbit small intestine. The Gly-Sar uptake in mRNA-injected oocytes was 9 times thigher than that in water-injected oocyltes. Thus, frog occytes can be utilized fro expression cloning of the genes encoding intestinal $H^+$peptide contransporters. Size fractionation of mRNA was successfully obtained using this technique.

  • PDF

Identification of mono- or poly-specific monoclonal antibody to Porphyromonas gingivalis heat-shock protein 60

  • Choi, Jeom-Il;Lee, Sang-Yull;Kim, Koan-Hoi;Choi, Bong-Kyu;Kim, Myung-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.2
    • /
    • pp.54-59
    • /
    • 2011
  • Purpose: The aim of this study was to define the immunoreactive specificity of Porphyromonas gingivalis (P. gingivalis) heat shock protein (HSP) 60 in periodontitis and atherosclerosis. Methods: In an attempt to define the cross-reactive bacterial heat-shock protein with human self-antigen at molecular level, we have introduced a novel strategy for cloning hybridoma producing anti-P. gingivalis HSP 60 which is polyreactive to bacterial HSPs or to the human homolog. Results: Five cross-reactive clones were obtained which recognized the #19 peptide (TLVVNRLRGSLKICAVKAPG) among 37 synthetic peptides (20-mer, 5 amino acids overlapping) spanning the whole molecule of P. gingivalis HSP 60. We have also established three anti-P. gingivalis HSP 60 monoclonal antibodies demonstrating mono-specificity. These clones recognized the #29 peptide (TVPGGGTTYIRAIAALEGLK). Conclusions: Peptide #19 and #29 of P. gingivalis HSP 60 might be important immunoreactive epitopes in the immuno-pathogenic mechanism of bacterial antigen-triggered autoimmune diseases.

Development of Protein Delivery System using Pullulan Acetate Microspheres (PAM) (플루란 아세테이트 미립구를 이용한 단백질 전달 시스템 개발)

  • Na, Kun;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.115-121
    • /
    • 2006
  • The aim of this study was to develop new protein/peptide depot system instead of poly(DL-lactic acid-coglycolic acid) (PLGA) microspheres. Pullulan was chemically modified by the addition of acetic anhydride (pullulan acetate; PA) and then investigated as new depot system for protein/peptide delivery. PA microspheres (PAM) with lysozyme as a model protein were prepared by w/o/w double emulsion method. The microspheres had a mean size of 10-50 mm with a spherical shape. The size distributions reduced with increasing the degree of acetylation. The loading efficiency of lysozyme was also increased. Lysozyme aggregation behavior in the microsphere was monitored to estimate the change of protein stability during preparation step. The ratios of protein aggregation in PAMs are lower than that of PLGA microsphere, in particular, PA 5 showed lowest as about 16%. The result indicated that the increase of acetylation suppressed the aggregation of protein. The release profiles of lysozyme from PAMs were significantly different. High acetylation effectively improved lysozyme release kinetics by reducing initial burst release and extending continuous release over a period of time. To check the effect of preservation for structural stability of lysozyme, the activity of lysozyme released from PA 5 was also observed. The activity of lysozyme was maintained almost 100% for 25 day. Therefore, PAM may become to a useful carrier for delivery of protein/peptide drugs, if it will be supported by biocompatibility and biodegradability results.