Browse > Article
http://dx.doi.org/10.14478/ace.2020.1050

Comparison between Basic and Inverse Dual Drug and Peptide-coated Stents in a Porcine Restenosis Model  

Jang, Eun-Jae (Biopharmaceutical Research Center)
Lee, So-Youn (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare)
Bae, In-Ho (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare)
Park, Dae Sung (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare)
Jeong, Myung Ho (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare)
Park, Jun-Kyu (CGBio Co. Ltd)
Publication Information
Applied Chemistry for Engineering / v.31, no.5, 2020 , pp. 502-508 More about this Journal
Abstract
Dual drug-eluting stents (DES) is a primary treatment method for coronary arterial diseases in current interventional cardiology practice. However, their pathological results according to the sequence of coating of drugs have not been reported yet. The peptide-dopamine dissolved in acetonitrile was coated onto the Chonnam National University Hospital (CNUH) stent using an electrospinning coating machine. For secondary coating (e.g., sirolimus coating, designated as SPS), sirolimus (SRL) and poly lactic-glycolic acid (PLGA) were mixed in tetrahydrofuran (THF), and the solution was then coated on the CNUH stent that had underwent the primary peptide coating using an electrospinning and spray technique. Next, the peptide-dopamine was coated on the SRL-PLGA coated stent (PSS). In this study, it was confirmed that endothelialization was promoted without being significantly affected by the coating order (SPS or PSS). The sequence of drug and peptide coating may affect the development of restenosis and PSS was effective in the prevention of restenosis compared to that of using SPS.
Keywords
Dual drug eluting stent; Electro-spinning coating; Peptide; Endothelialization; Restenosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Yu, B. Xu, D.E. Kandzari, Y. Wu, H. Yan, J. Chen, J. Qian, S. Qiao, Y. Yang, and R. L. Gao, First report of a novel polymer- free dual-drug eluting stent in de novo coronary artery disease: Results of the first in human BICARE trial, Catheter Cardiovasc. Interv., 83, 405-411 (2014).   DOI
2 C. M. Matter, I. Rozenberg, A. Jaschko, H. Greutert, D. J. Kurz, S. Wnendt, B. Kuttler, H. Joch, J. Grunenfelder, G. Zund, F. C. Tanner, and T. F. Luscher, Effects of tacrolimus or sirolimus on proliferation of vascular smooth muscle and endothelial cells, J. Cardiovasc. Pharmacol., 48, 286-292 (2006).   DOI
3 A. Curcio, D. Torella, and C. Indolfi, Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy, Circ. J., 75, 1287-1296 (2011).   DOI
4 Y. Le, W. Gong, B. Li, N. M. Dunlop, W. Shen, S. B. Su, R. D. Ye, and J. M. Wang, Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation, J. Immunol., 163, 6777-6784 (1999).
5 J. K. Seo, S. Y. Choi, Y. Kim, S. H. Baek, K. T. Kim, C. B. Chae, J. D. Lambeth, P. G. Suh, and S. H. Ryu, A peptide with unique receptor specificity: Stimulation of phosphoinositide hydrolysis and induction of superoxide generation in human neutrophils, J. Immunol., 158, 1895-1901 (1997).
6 S. C. Heo, Y. W. Kwon, I. H. Jang, G. O. Jeong, J. W. Yoon, C. D. Kim, S. M. Kwon, Y. S. Bae, and J. H. Kim, WKYMVm-induced activation of formyl peptide receptor 2 stimulates ischemic neovasculogenesis by promoting homing of endothelial colony-forming cells, Stem Cells, 32, 779-790 (2014).   DOI
7 E. J. Jang, I. H. Bae, D. S. Park, S. Y. Lee, K. S. Lim, J. K. Park, J. W. Shim, D. S. Sim, and M. H. Jeong, Effect of a novel peptide, WKYMVm- and sirolimus-coated stent on re-endothelialization and anti-restenosis, J. Mater. Sci. Mater. Med., 26, 251 (2015).   DOI
8 P. Buszman, S. Trznadel, A. Zurakowski, K. Milewski, L. Kinasz, M. Krol, and M. Kondys, Prospective registry evaluating safety and efficacy of cobalt-chromium stent implantation in patients with de novo coronary lesions, Kardiol. Pol., 65, 1041-1048 (2007).
9 S. Y. Lee, I. H. Bae, D. S. Park, E. J. Jang, J. W. Shim, K. S. Lim, J. K. Park, D. S. Sim, and M. H. Jeong, Comparison of dextran-based sirolimus-eluting stents and PLA-based sirolimus-eluting stents in vitro and in vivo, J. Biomed. Mater. Res. A, 105, 301-310 (2017).   DOI
10 I. H. Bae, K. S. Lim, J. K. Park, D. S. Park, S. Y. Lee, E. J. Jang, M. S. Ji, D. S. Sim, Y. J. Hong, Y. Ahn, J. C. Park, J. G. Cho, J. C. Kang, I. S. Kim, J. W. Nah, and M. H. Jeong, Mechanical behavior and in vivo properties of newly designed bare metal stent for enhanced flexibility, J. Ind. Eng. Chem., 21, 1295-1300 (2015).   DOI
11 National Research Council (U.S.), Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), National Academies Press (U.S.), Guide for the care and use of laboratory animals, National Academies Press,, Washington, D.C., 2011, pp. xxv, p. 220.
12 R. S. Schwartz, K. C. Huber, J. G. Murphy, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, and D. R. Holmes, Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model, J. Am. Coll. Cardiol., 19, 267-274 (1992).   DOI
13 M. H. Chen, P. C. Liang, K. C. Chang, J. Y. Huang, Y. T. Chang, F. Y. Chang, J. M. Wong, and F. H. Lin, Prototype of biliary drug-eluting stent with photodynamic and chemotherapy using electrospinning, Biomed. Eng. Online, 13, 118 (2014).   DOI
14 Y. H. Choi, S. C. Heo, Y. W. Kwon, H. D. Kim, S. H. Kim, I. H. Jang, J. H. Kim, and N. S. Hwang, Injectable PLGA microspheres encapsulating WKYMVM peptide for neovascularization, Acta Biomater., 25, 76-85 (2015).   DOI
15 W. Ye, Q. Shi, J. W. Hou, J. Jin, Q. F. Fan, S. C. Wong, X. D. Xu, and J. H. Yin, Superhydrophobic coating of elastomer on different substrates using a liquid template to construct a biocompatible and antibacterial surface, J. Mater. Chem. B, 2, 7186-7191 (2014).   DOI
16 A. Tan, Y. Farhatnia, A. de Mel, J. Rajadas, M. S. Alavijeh, and A. M. Seifalian, Inception to actualization: Next generation coronary stent coatings incorporating nanotechnology, J. Biotechnol., 164, 151-170 (2013).   DOI
17 H. Chang, K. F. Ren, H. Zhang, J. L. Wang, B. L. Wang, and J. Ji, The (PrS/HGF-pDNA) multilayer films for gene-eluting stent coating: Gene-protecting, anticoagulation, antibacterial properties, and in vivo antirestenosis evaluation, J. Biomed. Mater. Res. B Appl. Biomater., 103, 430-439 (2015).   DOI
18 X. Ma, S. Oyamada, F. Gao, T. Wu, M. P. Robich, H. Wu, X. Wang, B. Buchholz, S. McCarthy, Z. Gu, C. F. Bianchi, F. W. Sellke, and R. Laham, Paclitaxel/sirolimus combination coated drug-eluting stent: In vitro and in vivo drug release studies, J. Pharm. Biomed. Anal., 54, 807-811 (2011).   DOI
19 Y. Huang, S. S. Venkatraman, F. Y. Boey, E. M. Lahti, P. R. Umashankar, M. Mohanty, S. Arumugam, L. Khanolkar, and S. Vaishnav, In vitro and in vivo performance of a dual drug-eluting stent (DDES), Biomaterials, 31, 4382-4391, (2010).   DOI
20 A. W. Heldman, L. Cheng, G. M. Jenkins, P. F. Heller, D. W. Kim, M. Ware, Jr., C. Nater, R. H. Hruban, B. Rezai, B. S. Abella, K. E. Bunge, J. L. Kinsella, S. J. Sollott, E. G. Lakatta, J. A. Brinker, W. L. Hunter, and J. P. Froehlich, Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis, Circulation, 103, 2289-2295 (2001).   DOI
21 M. Shuchman, Trading restenosis for thrombosis? New questions about drug-eluting stents, N. Engl. J. Med., 355, 1949-1952 (2006).   DOI
22 A. Kivela and J. Hartikainen, Restenosis related to percutaneous coronary intervention has been solved?, Ann. Med., 38, 173-187 (2006).   DOI
23 Q. Lin, X. Ding, F. Qiu, X. Song, G. Fu, and J. Ji, In situ endothelialization of Intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer, Biomaterials, 31, 4017-4025 (2010).   DOI
24 J. J. Kleinedler, J. D. Foley, E. A. Orchard, and T. R. Dugas, Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization, J. Control. Release, 159, 27-33 (2012).   DOI
25 H. Tang, Q. Wang, X. Wang, J. Zhou, M. Zhu, T. Qiao, C. Liu, C. Mao, and M. Zhou, Effect of a Novel stent on re-endothelialization, platelet adhesion, and neointimal formation, J. Atheroscler. Thromb., 23, 67-80 (2016).   DOI
26 G. Nakazawa, J. F. Granada, C. L. Alviar, A. Tellez, G. L. Kaluza, M. Y. Guilhermier, S. Parker, S. M. Rowland, F. D. Kolodgie, and M. B. Leon, R. Virmani, Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization, JACC Cardiovasc. Interv., 3, 68-75 (2010).   DOI
27 M. R. Bennett, Vascular pathology as a result of drug-eluting stents, Heart, 93, 895-896 (2007).   DOI
28 P. Roopmani, S. Satheesh, D. C. Raj, and U. M. Krishnan, Development of dual drug eluting cardiovascular stent with ultrathin flexible poly(l-lactide-co-caprolactone) coating, ACS Biomater. Sci. Eng., 5(6), 2899-2915 (2019).   DOI