DOI QR코드

DOI QR Code

Synthesis and Catalytic Properties of Imidazole-Functionalized Poly(propylene imine)Dendrimers

  • Baker, Lane A. ;
  • Sun, Li ;
  • Crooks, Richard M.
  • Published : 2002.05.20

Abstract

The synthesis and characterization of third- and fifth-generation poly(propylene imine) dendrimers terminated with imidazole moieties is reported. Functionalization was achieved using simple peptide coupling reagents. These materials were characte rized by MALDI-MS, NMR, and titration. The use of these endgroup-functionalized dendrimers as catalysts for the hydrolysis of 2,4-dinitrophenyl acetate is described. Molecular simulations provide a basis for interpreting the catalytic data.

Keywords

References

  1. Klotz, I. M. Adv. Chem. Phys. 1978, 39, 109-176. https://doi.org/10.1002/9780470142585.ch3
  2. Nango, M.; Klotz, I. M. J. Polym. Sci., Polym. Chem. Ed. 1978,16, 1265-1273. https://doi.org/10.1002/pol.1978.170160609
  3. Overberger, C. G.; Salamone, J. C. Acc. Chem. Res. 1969, 2, 217-224. https://doi.org/10.1021/ar50019a004
  4. Overberger, C. G.; Kawakami, Y. J. Poly. Sci.: Poly. Chem. Ed.1978, 16, 1237-1248. https://doi.org/10.1002/pol.1978.170160607
  5. Tomko, R.; Overberger, C. G. J. Poly. Sci.: Poly. Chem. Ed. 1985,23, 265-277. https://doi.org/10.1002/pol.1985.170230201
  6. Breslow, R.; Schmuck, C. J. Am. Chem. Soc. 1996, 118, 6601-6605. https://doi.org/10.1021/ja954307n
  7. Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997-2011. https://doi.org/10.1021/cr970011j
  8. Nilsson, J.; Baltzer, L. Chem. Eur. J. 2000, 6, 2214-2220. https://doi.org/10.1002/1521-3765(20000616)6:12<2214::AID-CHEM2214>3.0.CO;2-E
  9. Francavilla, C.; Bright, F. V.; Detty, M. R. Org. Lett. 1999, 1,1043-1046. https://doi.org/10.1021/ol990836a
  10. Francavilla, C.; Drake, M. D.; Bright, F. V.; Detty, M. R. J. Am.Chem. Soc. 2001, 123, 57-67. https://doi.org/10.1021/ja002649+
  11. Kleij, A. W.; Gossage, R. A.; Gebbink, R. J. M. K.; Brinkmann,N.; Reijerse, E. J.; Kragl, U.; Lutz, M.; Spek, A. L.; van Koten, G.J. Am. Chem. Soc. 2000, 112, 12112-12124.
  12. Breinbauer, R.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39,3604-3607. https://doi.org/10.1002/1521-3773(20001016)39:20<3604::AID-ANIE3604>3.0.CO;2-9
  13. Ding, C. a.; Batorsky, R.; Bhide, R.; Chao, H. J.; Cho, Y.; Chong,S.; Gullo-Brown, J.; Guo, P.; Kim, S. H.; Lee, F.; Leftheris, K.;Miller, A.; Mitt, T.; Patel, M.; Penhallow, B. A.; Ricca, C.; Rose,W. C.; Schmidt, R.; Slucsarchyk, W. A.; Vite, G.; Yan, N.; Manne,V.; Hunt, J. T. J. Med. Chem. 1999, 42, 5241-5253. https://doi.org/10.1021/jm990391w
  14. Miklis, P.; Cagin, T.; Goddard, W. A. J. Am. Chem. Soc. 1997,119, 7458-7462. https://doi.org/10.1021/ja964230i
  15. Cavallo, L.; Fraternali, F. Chem. Eur. J. 1998, 4, 927-934. https://doi.org/10.1002/(SICI)1521-3765(19980515)4:5<927::AID-CHEM927>3.0.CO;2-W
  16. Cagin, T.; Wang, G.; Martin, R.; Breen, N.; Goddard, W. A.Nanotechnology 2000, 11, 77-84. https://doi.org/10.1088/0957-4484/11/2/307
  17. Cagin, T.; Wang, G.; Martin, R.; Zamanakos, G.; Vaidehi, N.;Mainz, D. T.; Goddard, W. A. Comp. 2001, 11, 329-343.
  18. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990,94, 8897-8909. https://doi.org/10.1021/j100389a010
  19. Baker, W. S.; Lemon, B. I.; Crooks, R. M. J. Phys. Chem. B 2001,105, 8885-8894. https://doi.org/10.1021/jp012473d
  20. Woller, E. K.; Cloninger, M. J. Biomacromolecules 2001, 2, 1052-1054. https://doi.org/10.1021/bm015560k
  21. Sundberg, R. J.; Martin, B. R. Chem. Rev. 1974, 74, 471-517. https://doi.org/10.1021/cr60290a003
  22. van Duijvenbode, R. C.; Borkovec, M.; Koper, G. J. M. Polymer1998, 39, 2657-2664. https://doi.org/10.1016/S0032-3861(97)00573-9
  23. Benns, J. M.; Choi, J.; Mahato, R. I.; Park, J.; Kim, S. W. Bioconj. Chem. 2000, 11, 637-645. https://doi.org/10.1021/bc0000177
  24. Koper, G. J. M.; van Genderen, M. H. P.; Elissen-Román, E.;Baars, M. W. P. L.; Meijer, E. W.; Borkovec, M. J. Am. Chem.Soc. 1997, 119, 6512-6521. https://doi.org/10.1021/ja970442j
  25. Sun, L.; Crooks, R. M. J. Phys. Chem. B, in press.
  26. Baker, L. A.; Crooks, R. M. Macromolecules 2000, 33, 9034-9039. https://doi.org/10.1021/ma001379c
  27. Bosman, A. W.; Janessen, R. A. J.; Meijer, E. W. Chem. Rev.1999, 99, 1665-1688. https://doi.org/10.1021/cr970069y

Cited by

  1. Organocatalysis with dendrimers vol.41, pp.11, 2012, https://doi.org/10.1039/c2cs35030k
  2. Synthesis of first- and second-generation imidazole-terminated POSS-core dendrimers and their pH responsive and coordination properties vol.44, pp.4, 2012, https://doi.org/10.1038/pj.2011.145
  3. Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium vol.5, pp.82, 2015, https://doi.org/10.1039/C5RA13093J
  4. -quinone methides: efficient access to unsymmetrical diarylindolylmethanes vol.42, pp.20, 2018, https://doi.org/10.1039/C8NJ03955K
  5. Reactivity in organised assemblies vol.102, pp.1460-4779, 2006, https://doi.org/10.1039/b518101c
  6. Regioselective Arylations of α-Amido Sulfones with Electron-Rich Arenes through Friedel-Crafts Alkylations Catalyzed by Ferric Chloride Hexahydrate: Synthesis of Unsymmetrical and Bis-Symmetrical Triarylmethanes vol.2010, pp.9, 2010, https://doi.org/10.1002/ejoc.200901186
  7. Electrochemistry on Alternate Structures of Gold Nanoparticles and Ferrocene-Tethered Polyamidoamine Dendrimers vol.25, pp.11, 2002, https://doi.org/10.5012/bkcs.2004.25.11.1681
  8. An easy access to unsymmetric trisubstituted methane derivatives (TRSMs) vol.46, pp.17, 2005, https://doi.org/10.1016/j.tetlet.2005.03.001
  9. A Copper(II)-Catalyzed Aza-Friedel–Crafts Reaction of N-(2-Pyridyl)sulfonyl Aldimines: Synthesis of Unsymmetrical Diaryl Amines and Triaryl Methanes vol.118, pp.4, 2002, https://doi.org/10.1002/ange.200503305
  10. A Copper(II)-Catalyzed Aza-Friedel–Crafts Reaction of N-(2-Pyridyl)sulfonyl Aldimines: Synthesis of Unsymmetrical Diaryl Amines and Triaryl Methanes vol.45, pp.4, 2006, https://doi.org/10.1002/anie.200503305
  11. Solvent-free, AlCl3-promoted tandem Friedel–Crafts reaction of arenes and aldehydes vol.255, pp.1, 2002, https://doi.org/10.1016/j.molcata.2006.03.060
  12. Dual-Reagent Catalysis within Ir−Sn Domain: Highly Selective Alkylation of Arenes and Heteroarenes with Aromatic Aldehydes vol.72, pp.8, 2002, https://doi.org/10.1021/jo062633n
  13. A simple access to triarylmethane derivatives from aromatic aldehydes and electron-rich arenes catalyzed by FeCl3 vol.64, pp.8, 2002, https://doi.org/10.1016/j.tet.2007.11.080
  14. Fe(ClO4)3·×H2O-Catalyzed direct C–C bond forming reactions between secondary benzylic alcohols with different types of nucleophiles vol.66, pp.16, 2002, https://doi.org/10.1016/j.tet.2010.02.063
  15. Imidazole and Dimethyl Aminopropyl‐Functionalized Hyperbranched Polymers for Nucleic Acid Transfection vol.10, pp.9, 2002, https://doi.org/10.1002/mabi.201000077
  16. Synthetic approach towards trisubstituted methanes and a chiral tertiary α-hydroxyaldehyde, a possible intermediate for tetrasubstituted methanes vol.3, pp.30, 2002, https://doi.org/10.1039/c3ra41826j
  17. Controlled, Sequential approach to Synthesize Stereogenic Methanes via in situ Generated Reactive Intermediates vol.1, pp.12, 2002, https://doi.org/10.1002/slct.201600650
  18. Catalyst-free assembly of giant tris(heteroaryl)methanes: synthesis of novel pharmacophoric triads and model sterically crowded tris(heteroaryl/aryl)methyl cation salts vol.15, pp.None, 2002, https://doi.org/10.3762/bjoc.15.60
  19. Gold(I)-Catalyzed Reactions between 2-(1-Alkynyl)-2-alken-1-ones and Vinyldiazo Ketones for Divergent Synthesis of Nonsymmetric Heteroaryl-Substituted Triarylmethanes: N- versus C-Attack Paths vol.22, pp.21, 2002, https://doi.org/10.1021/acs.orglett.0c02765
  20. Synthesis and Evaluation of Anticancer Activity of Pyrazolone Appended Triarylmethanes (TRAMs) vol.6, pp.24, 2002, https://doi.org/10.1002/slct.202101083