• Title/Summary/Keyword: Poly(vinyl alcohol)

Search Result 469, Processing Time 0.031 seconds

Thermal properties in strong hydrogen bonding systems composed of poly(vinyl alcohol), polyethyleneimine, and graphene oxide

  • Choi, Sua;Hwang, Duck Kun;Lee, Heon Sang
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.282-289
    • /
    • 2014
  • Blends of poly(vinyl alcohol) (PVA), polyethyleneimine (PEI), and graphene oxide (GO) were prepared by solution casting method. Calorimetric thermal properties of the blends were investigated. The $T_gs$ of PVA/PEI blends were higher than the $T_gs$ of either of the component polymers at low concentrations of PEI. These abnormal increases of $T_gs$ may be due to the negative entropy of mixing which is associated with strong hydrogen bonding between PVA and PEI. The degree of depression of $T^0_ms$ was not reduced by the negative entropy of mixing, since strong hydrogen bonding also causes an increase in the magnitude of negative ${\chi}$ between PVA and PEI. The $T_g$ of PVA was increased significantly by adding 0.7 wt.% GO into PVA. The magnitude of negative ${\chi}$ was increased by adding GO into the blends of PVA and PEI.

Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds

  • Ceylan, Seda;Demir, Didem;Gul, Gulsah;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The aim of this study was to investigate the effect of total polymer concentration on the chemical structure, morphology of pores, porosity, swelling ratio, degradation of gelatin-poly (vinyl alcohol) (Gel-PVA) cryogel scaffolds. Porous cryogels were prepared with cryogelation technique by using glutaraldehyde as a crosslinker. Functional group composition of cryogels after crosslinking was investigated by Fourier Transform Infrared (FTIR). The morphology of cryogels was characterized via scanning electron microscopy (SEM) and porosity analysis. All of the cryogels had a porous structure with an average pore size between $45.58{\pm}14.28$ and $50.14{\pm}4.26{\mu}m$. The cryogels were biodegradable and started to degrade in 14 days. As the polymer concentration increased the swelling ratio, the porosity and the degradation rate decreased. Spongy and mechanically stable Gel-PVA cryogels, with tunable properties, can be potential candidates as scaffolds for tissue engineering applications.

Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/Poly(vinyl alcohol) (가교결합한 Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) 음이온 교환막 제조)

  • Kim, Mi-Yang;Kim, Kwang-Je;Kang, Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.621-626
    • /
    • 2010
  • Anion exchange membranes can be used for reverse electrodialysis for electric energy generation, and capacitive deionization for water purification, as well as electrodialysis for desalination. In this study, anion exchange membranes of poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) were prepared through the polymerization of (vinylbenzyl)trimethylammonium chloride and 2-hydroxyethyl methacrylate in aqueous poly(vinyl alcohol) solutions, esterification with glutaric acid, and cross-linking reaction with glutaraldehyde. We investigated electrochemical properties for the anion exchange membranes prepared according to experimental conditions. Ion exchange capacity and electrical resistance for the membranes were changed with a variation in the monomer ratio in polymerization. Water uptake and conductivity for the membranes decreased with an increase in the content of glutaric acid in esterification. The change in the time of crosslinking reaction with the formed film and glutaraldehyde affected electrochemical properties such as water uptake, conductivity, or transport number for the membranes. Chronopotentiometry and limiting current density for the anion exchange membranes prepared were measured.

Biocompatibility of Multilayer Poly Methyl Methacrylate (PMMA)/Poly Vinyl Alcohol (PVA) Bone Plate by Electrospinning Method (전기방사로 제조된 다층 Poly Methyl Methacrylate (PMMA)/Poly Vinyl Alcohol (PVA) Bone Plate의 생체적합성 평가)

  • Kwak, Kyung-A;Kim, Young-Hee;Thai, Van Viet;Lee, Byong-Taek;Song, Ho-Yeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.312-318
    • /
    • 2010
  • Multilayer Poly methyl methacrylate (PMMA)/ Poly vinyl alcohol (PVA) bone plates were fabricated using electrospinning and in vitro investigations were carried out for pre-clinical biocompatibility studies. The initial cellular cytotoxicity of the methacrylate (PMMA)/ Poly vinyl alcohol (PVA) bone plates was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using fibroblast-like L-929 cells. Cellular adhesion and differentiation studies were carried out using osteoblast-like MG-63 cells. As simulated body fluid (SBF) contains the same ionic concentration of body fluid and any bioactive material tends to deposit bone-like apatite on the samples surfaces into the SBF, in vitro bioactivity of the multilayer bone plates were investigated using SBF. We also studied the internal organization and tensile strength of the multilayer PMMA/PVA bone plates using micro-computed topography (${\mu}$-CT) and universal testing instrument (UTI, Korea) respectively. The cellular cytotoxicity study with MTT confirmed that the cellular viability was 78 to 90% which indicates good cyto-compatibility. Scanning electron microscopic findings revealed a good attachment and adhesion phenomenon of MG-63 cells onto the surfaces of the samples. Cellular differentiation studies also showed that osteogenic differentiation was switched on in a timely manner and affirmed along with that of the control group. Bone-like apatite formation on the surfaces was confirmed within 14 days of SBF incubation. Initial organizations of the multilayer PMMA/PVA bone plates were characterized as dense and uniform. The tensile strength of the post-pressing electronspun mat was higher than that of the pre-electronspun mat. These results suggest that a multilayer PMMA/PVA bone plate system is biocompatible, bioactive and a very good alternative bone plate system.

Preparation and Drawing Property of Poly(vinyl alcohol) Film (폴리비닐알코올 필름의 제조 및 연신 특성)

  • Kim, Hun Min;Lee, Jungeon;Park, Jae Min;Park, Jae Hyeung;Choi, Jin Hyun;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.147-152
    • /
    • 2021
  • Bulk polymerization was used to produce poly(vinyl acetate) with different molecular weights, which were then saponified to prepare poly(vinyl alcohol) (PVA) with different molecular weights. With Pn of 2,060 and 3,240, the optimum film formation concentrations of PVA were found 7.5wt.% and 6.5wt.%, respectively. The drawing characteristics of the PVA film prepared at the optimum film formation concentrations were experimented, as well as the thermal characteristics of the PVA film based on the drawing ratio were observed. When the drawing velocity was fixed, it was found that the drawing ratios of all samples decreased as the heat band gap increased, and the melting temperature of the PVA film slightly increased as the drawing ratio increased regardless of the Pn of PVA.

Characterization of Poly(vinyl phosphate-b-styrene) by Solid-State $^{31}P$ NMR and Titration

  • Li, Guang-Hua;Kim, Sang-Hun;Cho, Chang-Gi;Park, Tae-Joon;Kim, Yong-Ae
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.504-509
    • /
    • 2006
  • Poly(vinyl phosphate-b-styrene) (PVPP-b-PS) block copolymers were synthesized successfully from poly(vinyl alcohol-b-styrene) (PVA-b-PS) by reaction with phosphorus oxychloride and subsequent hydrolysis. The obtained block copolymers were slightly crosslinked, and were characterized by various analytical techniques. The total phosphorus content and the ratio of the differently bound phosphorus were obtained by both solid-state $^{31}P$ NMR and pH titration, but the results differed slightly. Characterization by energy dispersion X-ray analysis (EDS) or Rutherford back scattering (RBS), on the other hand, determined the total phosphorus contents, but the results were quite different from those by solid-state $^{31}P$ NMR.

Swelling Behavior and Drug Release of Poly(vinyl alcohol) Hydrogel Cross-Linked with Poly(acrylic acid)

  • Byun, Hong-Sik;Hong, Byung-Pyo;Nam, Sang-Yong;Jung, Sun-Young;Rhim, Ji-Won;Lee, Sang-Bong;Moon, Go-Young
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.189-193
    • /
    • 2008
  • Thermal cross-linking method of poly(vinyl alcohol) (PVA) using poly(acrylic acid) (PAA) was carried out on PVA/PAA hydrogels. The level of gelation was measured in the PVA/PAA hydrogels with various PAA contents. The swelling behavior at various pHs showed that the swelling kinetics and water contents of the PVA/PAA hydrogels reached equilibrium after 30 h, and the time to reach the equilibrium state decreased with increasing PAA content in the hydrogel. The water content increased with increasing pH of the buffer solution. The permeation and release of the drug were tested using indomethacin as a model drug. The permeated and released amounts of the drug increased with decreasing the PAA content because of the low free volume in the hydrogel due to the higher cross-linking density. The kinetic profile of drug release at various pHs showed that all samples reached the equilibrium state within the 5 h.

Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperature Polymerization of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification (아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성)

  • 류원석;한성수;최진현;유상우;홍성일
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.610-620
    • /
    • 2000
  • Vinyl acetate (VAc) was polymerized at 30, 40, and 5$0^{\circ}C$ using 2,2'-azobis (2,4-dimethylvaleronitrile) (ADMVN) and tertiary butyl alcohol (TBA) as the initiator and the solvent, respectively. High molecular weight (HMW) atactic poly(vinyl alcohol) (PVA) was prepared by saponifying the poly(vinyl acetate) (PVAc) synthesized. The effect of polymerization conditions were investigated in terms of conversion, degree of branching for acetyl group of PVAc, and molecular weight of both PVAc and PVA. The polymerization rate of VAc in TBA was proportional to the 0.49th power of ADMVN concentration in good accordance with the theoretical value of 0.5. HMW-PVA with high yield could be obtained successfully, probably due to lower polymerization temperature and decreased chain transfer reaction rate which was achieved by adopting ADMVN and TBA. PYAc having average degree of polymerization (P$_{n}$) of 10000~13000 was obtained at the conversion of 35~70%. Saponification of so prepared PVAc yielded PVA having P$_{n}$ of 2400~6100. The syndiotactic diad content increased with decreasing polymerization temperature and increasing VAc concentration due to a steric hindrance effect of TBA during polymerization.

  • PDF

Poly(4-vinylpyridine)/Vinyl Acetate-Vinyl Alcohol Copolymer Blends : 9. Phase. Behavior (폴리(4-비닐피리딘)/비닐아세테이트-비닐알코올 공중합체 블렌드 :2. 상 거동)

  • Lee, Joon-Youl;Choi, Dong-Hoon;Lee, Hyeok
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.649-656
    • /
    • 2001
  • Miscibility of poly(4-vinylpyridine) (P4VP) blends with poly(vinyl acetate-co-vinyl alcohol) (VAc-VAL copolymers) was investigated as a function of comonomer composition of VAc-VAL copolymers. Differential scanning calorimetry (DSC) and thermo-optical microscopic (TOM) analysis confirmed that P4VP is miscible with VAc-VAL copolymers containing more than 30 mole% VAL. Fourier transform inflated (FT-IR) spectroscopic analysis revealed that the strong intermolecular hydrongen bonding interaction between the vinylpyridine and VAL hydroxyl group was formed. Theoretical phase diagram was constructed by the calculation using the Association model, a thermodynamic model for hydrogen-bonded polymer blend systems developed by Coleman et al. The calculated theoretical binodal phase diagrams were in good agreement with the experimentally determined cloud point curves.

  • PDF

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.