• Title/Summary/Keyword: Poly(vinyl alcohol)

Search Result 469, Processing Time 0.035 seconds

Oxygen Permeation Characteristics of Nano-silica Hybrid Thin Films (나노 실리카 하이브리드 박막의 산소 투과 특성)

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.174-181
    • /
    • 2007
  • In this study, $SiO_2/poly(ethylene-co-vinyl$ alcohol)(EVOH) hybrid coating materials with gas barrier property could be produced using sol-gel method. The biaxially oriented polypropylene (BOPP) substrate with surface pretreatment was coated with the prepared hybrid sols containing various inorganic silicate component by a spin coating method. Crystallization behavior of the hybrids was investigated in terms of analysis of X-ray diffraction and cooling thermogram from DSC experiment. From the morphological observation of the $SiO_2/EVOH$ hybrid gel, it was confirmed that there existed an optimum content of inorganic silicate precursor, Tetraethylorthosilicate (TEOS), to produce hybrid materials with dense microstructure, exhibiting uniformly dispersed silica particles with average size below 100 nm. When TEOS was added at below or above the optimum content, particle clusters with large domain were observed, resulting in phase separation. This morphological result was found to be in good agreement with that of oxygen permeability of the hybrid coated films. In the case of film coated with hybrid prepared from addition of 0.01 - 0.02mol of TEOS, a remarkable improvement in barrier property could be obtained, however, with the addition of TEOS more than 0.04 mol, the barrier property was dramatically reduced because of phase separation and micro-crack formation on the film surface.

Effects of Organic Passivation Films on Properties of Polymer Solar Cells with P3HT:PC61BM Active Layers (유기 패시베이션 박막이 P3HT:PC61BM 활성층을 갖는 고분자 태양전지의 특성에 미치는 영향)

  • Lee, Sang Hee;Park, Byung Min;Cho, Yang Keun;Chang, Ho Jung;Jung, Jae Jin;Pyee, Jaeho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.105-110
    • /
    • 2014
  • It is required to improve the efficiency and the reliability of the polymer solar cells (PSCs) as the energy saving optical device for the future application of the smart farm facilities. In this study, we fabricated the bulk hetero junction PSCs with organic passivation film layer for the reliability improvement of the devices. The effects of the passivation layer on the electrical properties of the PSCs were studied. The materials of passivation layer are composed of poly vinyl alcohol (PVA) and ammonium dichromate, and the passivation films were fabricated by the spin coating method on the P3HT:$PC_{61}BM$/LiF/Al substrate. The prepared structure of the device is the glass/ITO/PEDOT:PSS/P3HT:$PC_{61}BM$/LiF/Al/passivation layer. The performances of the PSCs with the organic passivation film showed better electrical properties compared with the PSCs without passivation layers. The power conversion efficiency (PCE) values of passivated PSCs decreased from 3.0 to 1.3% after air exposure for 140 hrs. In contrast, the PCE values for the devices without passivation decreased sharply from 3.5 to 0.1% under the same exposure condition.

Characteristic of Water Pervaporation Using Hydrophilic Composite Membrane Containing Functional Nano Sized NaA zeolites (기능성 나노 제올라이트가 분산된 친수성 복합막 제조 및 탈수 투과증발 특성 연구)

  • Oh, Duckkyu;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.98-105
    • /
    • 2013
  • The NaA zeolite particles were dispersed in a poly(vinyl alcohol) (PVA) matrix to prepare a composite membrane. The nano sized zeolite particles of NaA were synthesized in the laboratory and the mean size was approximately 60 nm. Pervaporation characteristics such as a permeation flux and a separation factor were investigated using the membrane as a function of the feed concentration from 0.01 to 0.05 mole fraction and the weight % of NaA particles between 0 wt% and 5 wt% in the membrane. Also, the micro sized particles of $5{\mu}m$ were dispersed in the membrane for a comparison purpose. When the ethanol concentration in the feed solution was 0.01 mole fraction, the flux of water significantly increased from $600g/m^2/hr$ to $2000g/m^2/hr$ as the content of the nano NaA particles in the membrane increased from 0 wt% to 5 wt%, while the NaA particles improved the separation factor from 1.5 to 7.9. When the flux of water through the membrane containing nano sized particles was roughly 15% increased compared to the micro sized particles, whereas the separation factor of water was found to be approximately 5% increased. It can be said that the role of the nano sized NaA particles is quite important since both the flux and the separation factor are strongly affected.

Blood Compatibility of Polyurethane-poly(vinyl alcohol) Polymer Blends (폴리우레탄-폴리비닐알콜 블렌드의 혈액적합성)

  • 김승수;유영미;신재섭;정규식
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.82-89
    • /
    • 2000
  • The blood compatibilities of PU/PVA polymer blends with different mixing ratios were evaluated using various methods, such as fibrinogen adsorption, plasma recalcification time, platelet adhesion, whole blood clotting time, and complement activation. In addition, PVA on the surface of the polymer blends was crosslinked by glutaraldehyde to restrain the mobility of PVA molecules for characterizing the effect of PVA in the polymer blends on blood compatibility. The fibrinogen adsorption on the polymer blends decreased with the increase of PVA amount in the polymer blends. The plasma recalcification times of the polymer blends with 10-50 wt% PVA were longer than those of PU, PVA, and polymer blends with higher amount of PVA. The morphological changes and adhesion of platelets on the polymer blends with 30-50 wt% PVA were less than those on the other materials. The blood clotting times and complement activation on the polymer blends with 30-50 wt% PVA were reduced, compared to the other materials. On the other hand, the blood compatibility of the crosslinked polymer blends was relatively decreased, compared to the non-crosslinked ones. According to these experimental results, the blood compatibility of the polymer blends with 30-50 wt% PVA was better than that of the other materials and such a blood compatibility of the polymer blends might be related to the mobility of PVA molecules on the surface.

  • PDF

Flexural Behavior of Fiber Reinforced Concrete Beams with Hybrid Double-layer Reinforcing Bars (이중 보강근을 가지는 FRC 보의 휨성능)

  • Kim, Seongeun;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.199-207
    • /
    • 2018
  • Experimental programs were performed to evaluate the flexural performance of fiber reinforced concrete(FRC) beams using a hybrid double-layer arrangement of steel bars and fiber reinforced polymer(FRP) bars or using FRP bars only. A total of seven beam specimens were produced with type of tensile reinforcing bar(CFRP bar, GFRP bar, steel bar) and the poly vinyl alcohol(PVA) fiber mixing ratio(0.5%, 0%) as variable. An analysis method for predicting the flexural behaviors of FRC beams with hybrid arrangement of heterogeneous reinforcing bars through finite element analysis was proposed and verified. In case of the specimens with the double-layer reinforcing bars, the test results showed that the first cracking load of specimen with a double-layer arrangement of steel bars was greater by 26-34% than specimens with a hybrid double-layer arrangement of steel and FRP bars. In maximum flexural strengths, the specimen that used CFRP bars as bottom tensile reinforcing bar showed the greatest strength among the specimens with the double-layer reinforcing bars. When the maximum moment value obtained through experiments was compared with that obtained through analysis, the ratio was 1.2 on average, the standard deviation was 0.085, and the maximum error rate was 22% or less. Based on these results, the finite element analysis model proposed in this study can effectively simulate the actual behavior of the beams with hybrid double-layer reinforcing bars.

Preparation and Characterizatino of Nano-sized Liposome Containing Proteins Derived from Coptidis rhizoma (황련유래 단백질이 함유된 나노리포좀의 제조 및 특성)

  • Oh, Seng Ryong;Lee, Sang Bong;Cho, Kye Min;Choi, Moon Jae;Jin, Byung Suk;Han, Yong Moon;Lee, Young Moo;Shim, Jin Kie
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Coptidis Rhizoma, an antimicrobial agent from natural source, is known to have the antiviral effect on the Candida albicans that causes the infectious dermatitis. The valuable protein was extracted from the Coptidis Rhizoma, To prevent denaturalization from external stimulus and improve adsorption onto the skin, the nano-sized liposomes were prepared as a carrier. The CPR-containing liposomes showed an average diameter of 187 nm, surface charge of 3.337 mV and 33% encapsulation efficiency. The release behavior of CRP from the liposome was investigated with various temperature and releasing time. The PVA solution was coated on the surface of liposome to improve the stability. The coated liposome showed slow release behavior in comparison with the non-coated liposome. The CRP in the liposome maintained the effect on the Candida albicans after treating it at 50 and with ultraviolet for 24 h.

Experimental Study on Engineering Performance Evaluation and Field Performance of Environmentally Friendly Functional Concrete (친환경 기능성 콘크리트의 공학적 성능평가 및 현장적용성능에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Kim, Yun-Yong;Jang, Young-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • In this study, the physical, mechanical, structural, and environmental performances based on field measured data were evaluated to check the suitability of concrete for ecological preservation and cultivation of a hydrophilic environment. More specifically, the study is focused on developing an environmentally friendly functional concrete with river ecology restoration and natural river early formation capabilities. The mechanical performance evaluation results showed that the increase in mix rate of the PVA (Poly Vinyl Alcohol) reinforcement fibers and silica fume caused an increase in the strength. The optimal mix rate was found to be 0.05 volume % PVA fiber and approximately 10% silica fume. The frost resistance evaluation showed that superior performance was gained when 0.05 volume % PVA fiber and 15% silica fume was mixed simultaneously. In the structural performance evaluation, the bending strength was improved by 47.7% compared to plain concrete when mixed with 0.05 volume % PVA fiber. The flexural toughness also saw significant improvement. The environmental monitoring of field performance showed that grasses germinated most rapidly, but the growth of red poppies, a plant that germinates in the spring, was most active with passing of time. Coverage measurements in all of the monitoring locations found favorable coverage of over 95% after 12 weeks. The study results showed that the environmentally friendly functional concrete had outstanding environmental performance.

Influence of various serum supplement on in vitro culture for goat embryos (다양한 혈청 물질의 첨가가 염소 수정란의 체외배양에 미치는 영향)

  • Kim, Kwan-Woo;Jeon, Dayeon;Lee, Jinwook;Lee, Sung-Soo;Kim, Seungchang;Kim, Chan-Lan;Lee, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.510-516
    • /
    • 2019
  • This study examined the effects of fetal bovine serum (FBS), goat blood serum (gBS), and poly-vinyl alcohol (PVA) on the in vitro development and embryo quality of goats for an improvement of embryo production. For the experiment, an in vitro fertilized embryo culture medium was supplemented with 10% FBS, 10% gBS, and 10% PVA to determine their effects on the embryo development efficiency and blastocyst quality. The results showed that the non-serum supplementation group showed significantly lower cleavage rate and blastocyst formation. On the other hand, the gBS and PVA supplementation groups showed a significant increase in the cleavage rate and better blastocyst formation than the control and FBS supplementation group. Furthermore, a TUNEL assay performed to confirm the blastocyst quality showed the same pattern as the embryo development experiment. These results showed that the supplemented gBS or PVA was more efficient in enhancing the in vitro development efficiency of goats than the supplementation of FBS or non-serum. On the other hand, considering the risk of an unidentified factor in gBS, PVA appears to be safer and more efficient in the in vitro development of goat embryos.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.