• Title/Summary/Keyword: Polishing velocity

Search Result 68, Processing Time 0.024 seconds

A Study on the Effect of Pattern Density and it`s Modeling for ILD CMP (패턴 웨이퍼의 화학기계적 연마시 패턴 밀도의 영향과 모델링에 관한 연구)

  • Hong, Gi-Sik;Kim, Hyung-Jae;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.196-203
    • /
    • 2002
  • Generally, non-uniformity and removal rate are important factors on measurements of both wafer and die scale. In this study, we verify the effects of the pressure and relative velocity on the results of the chemical mechanical polishing and the effect of pattern density on inter layer dielectric chemical mechanical polishing of patterned wafer. We suggest an appropriate modeling equation, transformed from Preston\`s equations which was used in glass polishing, and simulate the removal rate of patterned wafer in chemical mechanical polishing. Results indicate that the pressure and relative velocity are dominant factors for the chemical mechanical polishing and pattern density effects on removal rate of pattern wafers in die scale. The modeling is well agreed to middle and low density structures of the die. Actually, the die used in Fab. was designed to have an appropriate density, therefore the modeling will be suitable for estimating the results of ILD CMP.

Standardization of Polishing Work by MAGIC Polishing Tool (MAGIC 숫돌에 의한 연마작업의 표준화)

  • Cho, Jong-Rae;Lee, Sang-Tea;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.39-48
    • /
    • 2005
  • As the industrial development is accelerated, a new machining process and system are keenly required to achieve super precision surface finish. Especially to get ground surface finish fer complicated and narrow inner shape of molds, it is impossible with the existing methods so that a new method is being required to be developed. A new material, called Magic(MAGnetic Intelligent Compounds), is finally made and it is called Magic machining that uses this material. There is a way to make a material as follows, the mixture of magnetic particles, bonding material and particles of abrasive grain should be melt down by proper heat, and then this mixture put in a mold and cool down in magnetic field which has a uniform direction. This new polishing method is spotlighted as an excellent solution to the existing problems. However it hasn't reported any study about the influence of the machining conditions of polishing velocity, amplitude and polishing pressure to the surface roughness yet. This study would examine closely the influence of polishing conditions of the Magic polishing tool to the surface finish to decide the optimum polishing condition and to standardize the Magic polishing work.

Physics of the Coefficient of Friction in CMP

  • Borucki, Len;Philipossian, Ara;Zhuang, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.79-83
    • /
    • 2007
  • The implications of a theory of lubricated pad asperity wafer contact are traced through several fundamental areas of chemical-mechanical polishing. The hypothesized existence of a nanolubrication layer underlies a high accuracy model of polish rates. It also provides a quantitative explanation of a power law relationship between the coefficient of friction and a measure of pad surface flattening. The theory may further be useful for interpreting friction changes during polishing, and may explain why the coefficient of friction is sometimes observed to have a temperature or velocity dependence.

A Numerical Analysis Using CFD for Effective Process at CMP Equipment (CFD를 이용한 CMP장비의 효과적인 공정을 위한 수치해석적 연구)

  • Lee, Sue-Yeon;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.139-144
    • /
    • 2011
  • CMP process is an essential element in the semiconductor product processes in Chemical Mechanical Polishing. Taken as a whole, CMP is one process, but concretely, it is a detail process which consists of polishing, cleaning, and so on. Especially, the polishing and cleaning are key points in the whole process. Polishing rate is the most important factor and is related with deposition of slurry in the polishing process. Each outlet velocities is the most important factors in cleaning process. And when the velocities are more uniform, the cleaning becomes more effective. In this research, based on these factors, we performed a numerical analysis for effective polishing and cleaning which can be applied to industrial field. Consequently, we figured out that more than one opened nozzle is more effective than one opened nozzle at the polishing pad in case of this research. And we confirmed that the revised models have the uniform velocity distribution more than the previous model of the cleaning nozzle.

MRR model for the CMP Process Considering Relative Velocity (상대속도를 고려한 CMP 공정에서의 연마제거율 모델)

  • 김기현;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) process becomes one of the most important semiconductor processes. But the basic mechanism of CMP still does not established. Slurry fluid dynamics that there is a slurry film between a wafer and a pad and contact mechanics that a wafer and a pad contact directly are the two main studies for CMP. This paper based on the latter one, especially on the abrasion wear model. Material Removal Rate(MRR) is calculated using the trajectory length of every point on a wafer during the process time. Both the rotational velocity of a wafer and a pad and the wafer oscillation velocity which has omitted in other studies are considered. For the purpose of the verification of our simulation, we used the experimental results of S.H.Li et al. The simulation results show that the tendency of the calculated MRR using the relative velocity is very similar to the experimental results and that the oscillation effect on MRR at a real CMP condition is lower than 1.5%, which is higher than the relative velocity effect of wafer, and that the velocity factor. not the velocity itself, should be taken into consideration in the CMP wear model.

Precision Magnetic Abrasive Polishing for Internal-face of STS304 Sanitary Pipe (STS304 위생용 파이프 내면의 정밀 자기연마)

  • Kim H.N.;Choi H.S.;Yu S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.166-169
    • /
    • 2005
  • The magnetic polishing is the useful method to finish using magnetic power of magnet. This method is one of precision polishing techniques and has an aim of the clean. technology using for the pure of gas and inside of the sanitary pipe for transportation. The magnetic abrasive polishing method is not so common for machine that it is not spreaded widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. In this paper. We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.

  • PDF

Velocity Measurements of Slurry Flows in CMP Process by Particle Image Velocimetry (Particle Image Velocimetry 기법을 이용한 CMP 공정의 Slurry유동 분석)

  • Kim Mun-Ki;Yoon Young-Bin;Koh Young-Ho;Hong Chang-Gi;Shin Sang-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.59-67
    • /
    • 2006
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some previous works show that RR is determined by production of pressure and velocity and NU is also largely affected by velocity of flowfield during CMP. This study is about the direct measurement of velocity of slurry during CMP and whole flowfield upon the non-groove pad by Particle Image Velocimetry(PIV). Typical PIV system is modified adequately for inspecting CMP and slurry flowfield is measured by changing both pad rpm and carrier rpm. We performed measurement with giving some variation in the kinds of pad. The results show that the flowfield is majorly determined not by Carrier but by Pad in the case of non-groove pad.

Magnetic Polishing Using Ba-Ferrite Magnetic Substance (Ba-Ferrite 자성체를 사용한 자기연마 가공)

  • Yun, Yeo-Kwon;Kim, Hee-Nam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2010
  • The magnetic polishing is the useful method to finish some machinery fabrications by using magnetic power. This method is one of the precision techniques and has an aim for clean technology in the clean pipes. The magnetic abrasive polishing method is not so common in the field of machine that it is not known to widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get the best surface roughness at low cost. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. In this paper, We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.

The Study on the Machining Characteristics of 4 inch Wafer for the Optimal Condition (최적 가공 조건을 위한 4인치 웨이퍼의 가공 특성에 관한 연구)

  • Won, Jong-Koo;Lee, Jung-Taik;Lee, Jung-Hun;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.90-95
    • /
    • 2007
  • Single side final polishing is a very important role to stabilize a wafer finally before the device process on the wafer is executed. In this study, the machining variables, such as pressure, machining time, and the velocity of pad table were adopted. These parameters have the major influence on the characteristics of wafer polishing. We investigated the surface roughness changing these variables to find the optimal polishing condition. Pad, slurry, slurry quantity, and oscillation distance were set to the fixed variables. In order to reduce defects and find a stable machining condition, a hall sensor was used on the polishing process. AE sensor was attached to the polishing machine to verify optimal condition. Applying data analysis of the sensor signal, experiments were performed. We can get better surface roughness from loading the quasi static force and improving wafer-holding method.

The Effects of Ba-Ferrite Magnetic Abrasive Behavior on Polishing Characteristics (Ba-Ferrite계 자기연마재 거동이 연마특성에 미치는 영향)

  • Yun, Yeo-Kwon;Kim, Hee-Nam
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.311-317
    • /
    • 2009
  • In this paper deals with behavior of the magnetic abrasive using Ba-Ferrite on polishing characteristics in a new internal finishing of STS304 pipe applying magnetic abrasive polishing. The magnetic abrasive using Ba-Ferrite grain WA used to resin bond fabricated low temperature. And Ba-Ferrite of magnetic abrasive powder fabricated that Ba-Ferrite was crused into 200 mesh. The previous research have made an experiment in the static state the movement of magnetic abrasive grain is nevertheless in the dynamic state. In this paper, We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.