• Title/Summary/Keyword: Pole placement method

Search Result 123, Processing Time 0.026 seconds

Pole Placement Method of a Double Poles Using LQ Control and Pole's Moving-Range (LQ 제어와 근의 이동범위를 이용한 중근의 극배치 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • In general, a nonlinear system is linearized in the form of a multiplication of the 1st and 2nd order system. This paper reports a design method of a weighting matrix and control law of LQ control to move the double poles that have a Jordan block to a pair of complex conjugate poles. This method has the advantages of pole placement and the guarantee of stability, but this method cannot position the poles correctly, and the matrix is chosen using a trial and error method. Therefore, a relation function (𝜌, 𝜃) between the poles and the matrix was derived under the condition that the poles are the roots of the characteristic equation of the Hamiltonian system. In addition, the Pole's Moving-range was obtained under the condition that the state weighting matrix becomes a positive semi-definite matrix. This paper presents examples of how the matrix and control law is calculated.

An Adaptive Pole-zero Placement Algorithm Using Internal Model Principle (Internal Model Principle을 이용한 극-영점 배치 적응제어기에 관한 연구)

  • Lee, Jeong-Joon;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.388-392
    • /
    • 1989
  • In this paper, an adaptive pole-zero placement algorithm which has disturbance rejection properties is proposed. This method using the internal model principle is shown to reject the disturbances asymptotically. Furthermore, a method which reduces the number of estimated parameters is proposed. Some simulation results are given to demonstrate the performance of the algorithms.

  • PDF

Implementation of a pole-placement self-tuning adaptive controller for SCARA robot using TMS320C5X chip (TMS320C5X칩을 사용한 스카라 로봇의 극점배치 자기동조 적응제어기의 실현)

  • Bae, Gil-Ho;Han, Sung-Hyun;Lee, Min-Chul;Son, Kwon;Lee, Jang-Myung;Lee, Man-Hyung;Kim, Sung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.61-64
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS32OC50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator. In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters are determined by the pole-placement method. Performance of self-tuning adaptive controller is illustrated by the simulation and experiment for a SCARA robot.

  • PDF

Robust Control of Robot Manipulator using Self-Tuning Adaptive Control (자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어)

  • 뱃길호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Design of a Robust Controller Using Genetic Algorithms and LMI Design Method (유전자 알고리즘과 LMI 설계 방법을 이용한 강인 제어기의 설계)

  • Lee, Moon-Noh;Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.619-624
    • /
    • 2011
  • This paper presents a controller design method for a robust control problem with multiple constraints using genetic algorithms and LMI design method. A robust $H_{\infty}$ constraint with loop shaping and pole placement is used to address disturbance attenuation with error limits and desired transient specifications, in spite of the plant uncertainties and disturbances. In addition, a loop gain constraint is considered so as not to enlarge the loop gain unnecessarily. The robust $H_{\infty}$ constraint and pole placement constraint can be expressed in terms of two matrix inequalities and the loop gain constraint can be considered as an objective function so that genetic algorithms can be applied. Accordingly, a robust controller can be obtained by integrating genetic algorithms with LMI approach. The proposed controller design method is applied to a track-following system of an optical disk drive and is evaluated through simulation results.

Robust pole placement method using matching condition (Matching 조건을 이용한 강인한 극점배치 방법)

  • 신준호;정정주;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.696-699
    • /
    • 1997
  • In this paper, we presents that for discrete system with matched perturbation of uncertain parameters in the state coefficient matrix A(i.e., with perturbation of A in the range of the input matrix B), the poles of the perturbed closed loop system can be placed into the preassigned circle by the static-state feedback. We discuss the robust stabilization of the system satisfying the matching condition and application to the controller design problem.

  • PDF

Design of a Tracking Gain-up Controller for the Vibration Suppression of Tracking Actuator (트랙킹 액추에이터의 진동 억제를 위한 트랙킹 Gain-up 제어기 설계)

  • Lee, Moonnoh;Jin, Kyoung Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.356-364
    • /
    • 2013
  • This paper presents a tracking gain-up controller design method to control effectively the vibration of tracking actuator caused by external shocks and remaining velocity after seek control. A pole placement constraint is considered to assure a desired transient response against the vibration of tracking actuator. A loop gain-up constraint is introduced to hold the tracking gain-up loop gain and control bandwidth within allowable bounds. The pole placement constraint is expressed by a matrix inequality and the loop gain-up constraint is considered as an objective function so that genetic algorithm can be applied. Finally, a tracking gain-up controller is obtained by integrating a genetic algorithm with LMI design approach. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and its effectiveness is evaluated through the experimental results.

Digital State Feedback Current Control using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • A digital state feedback control method for the current mode control of DC-DC converters is proposed in this paper. This approach can precisely achieve interleaved current sharing among the converter modules. As the controller design and system analysis are performed in the time domain, the proposed method can easily satisfy the required converter specification by using the pole placement technique. The digital state feedback controller in the continuous and discrete time domain is derived for the robust tracking control. For the verification of the proposed control scheme, a parallel module bi-directional converter in a prototype 42V/14V hybrid automotive power system, which is a design example in the continuous time domain, and a parallel module buck converter, which is a design example in the discrete time domain, are implemented using a TMS320F2812 digital signal processor (DSP).

A Study on the Direct Pole Placement PID Self-Tuning Controller Design for DC Servo Motor Control (직류 서어보 전동기 제어를 위한 직접 극배치 PID 자기동조 제어기의 설계)

  • Nam, Moon-Hyun;Rhee, Kyu-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.55-64
    • /
    • 1990
  • This paper concerned about a study on the direct pole placement PID self-tuning controller design for DC servo motor control system. The method of a direct pole placement self-tuning PID control for a DC servo motor of Robot manipulator tracks a reference velocity in spite of the parameters uncertainties in nonminimum phase system. In this scheme, the parameters of classical controller are estimated by the recursive least square (RLS)identification algorithm, the pole placement method and diophantine equation. A series of simulation in which minimum phase system and nonminimum phase system are subjected to a pattern of system parameter changes is presented to show some of the features of the proposed control algorithm. The proposed control algorithm which shown are effective for the practical application, and experiments of DC servo motor speed control for Robot manipulator by a microcomputer IBM-PC/AT are performed and the results are well suited.

  • PDF

Pole-Placement Self-Tuning Control for Robot Manipulators in Task Coordinates (작업좌표에서 로보트 매니퓰레어터에 대한 극점배치 자기동조 제어)

  • 양태규;이상효
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 1989
  • This paper proposes an error model with integral action and a pole-place-ment self-tuning controller for robot manipulators in task coordinates. The controller can reject the offset due to any load disturbance without a detailed description of the robot dynamics. The error model parameters are estimated by the recursive least square identification algorithms, and controller parameters are determined by the pole-placement method. A computer simulation study has been conducted to demonstrate the performance of the proposed control system in task coordinates for a 3-joint and 2-link spatial robot manipulator with payload.