• Title/Summary/Keyword: Pole placement

Search Result 231, Processing Time 0.027 seconds

An inverse LQG/LTR problem applied to the vehicle steering system

  • Park, Yong-Woon;Kim, Dae-Hyun;Scott, Kimbrough
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.324-327
    • /
    • 1996
  • This paper describes the robust controller design methods applied to the problem of an automatic system for tow-vehicle/trailer combinations. This study followed an inverse Linear Quadratic Regulator(LQR) approach which combines pole assignment methods with conventional LOR methods. It overcomes two concerns associated with these separate methods. It overcomes the robustness problems associated with pole placement methods and trial and error required in the application of the LQR problem. Moreover, a Kalman filter is used as the observer, but is modified by using the loop transfer recovery (LTR) technique with modified transmission zero assignment. The proposed inverse LQG,/LTR controllers enhances the forward motion stability and maneuverability of the combination vehicles. At high speeds, where the inherent yaw damping of the vehicle system decreases, the controller operates to maintain an adequate level of yaw damping. At backward moton, both 4WS (2WS tow-vehicle, 2WS trailer) and 6WS (4WS tow-vehicle, 2WS trailer) control laws are proposed by using inverse LQG/LTR method. To evaluate the stability and robustness of the proposed controllers, simulations for both forward and backward motion were conducted using a detailed nonlinear model. The proposed controllers are significantly more robust than the previous controllers and continues to operate effectively in spite of parameter perturbations that would cause previous controllers to enters limit cycles or to loose stability.

  • PDF

Missile Autopilot Design for Agile Turn Control During Boost-Phase

  • Ryu, Sun-Mee;Won, Dae-Yeon;Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.365-370
    • /
    • 2011
  • This paper presents the air-to-air missile autopilot design for a $180^{\circ}$ heading reversal maneuver during boost-phase. The missile's dynamics are linearized at a set of operating points for which angle of attack controllers are designed to cover an extended flight envelope. Then, angle of attack controllers are designed for this set of points, utilizing a pole-placement approach. The controllers' gains in the proposed configuration are computed from aerodynamic coefficients and design parameters in order to satisfy designer-chosen criteria. These design parameters are the closed-loop frequency, damping ratio, and time constant; these represent the characteristics of the control system. To cope with highly nonlinear and rapidly time varying dynamics during boost-phase, the global gain-scheduled controller is obtained by interpolating the controllers' gains over variations of the angle of attack, Mach number, and center of gravity. Simulation results show that the proposed autopilot design provides satisfactory performance and possesses good [ed: or "sufficient" or "excellent"] capabilities.

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (유도탄의 유도명령 추종을 위한 혼합제어기 설계 : 공력 및 추력벡터제어)

  • 이호철;최용석;송택렬;송찬호;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.658-668
    • /
    • 2004
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories. In addition, an autopilot design method is proposed by using time-varying control technique which is time-varying version of the pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. The control allocation proposed in this paper is capable of extracting the maximum performance by combining each control effector, aerodynamic fin and thrust vectoring control. The adopted time-varying control technique for the autopilot design enhances the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulations with aerodynamic data.

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF

Speed Controller Design of a Two-Inertia Motor System Using Weighted ITAE Index (가중 ITAE 지수를 사용한 2관성 모터시스템의 속도제어기 설계)

  • Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.581-589
    • /
    • 2009
  • In a two-inertia motor system with flexible shaft, a torsional vibration is often generated as a quick speed response is required. This vibration makes it difficult to achieve a quick response of speed and disturbance rejection. The objective of this paper is to provide a systematic analysis and design of the three kinds of speed controllers such as I-P, I-PD, and state feedback control by using the weighted ITAE performance index. Some simulation and experiment results verify the effectiveness of the proposed design.

Self-Tuning Adaptive Control Using State Observer (상태 관측기를 이용한 자기-동조 적응 제어)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Oh, Gi-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.223-226
    • /
    • 1991
  • In this paper, the problem of designing on adaptive controller for dc drives using state observers, which is operated under varying load conditions, is addressed. A robust self-tuning controller that can track a constant reference and reject constant load disturbances is also studied. This scheme is very attractive since the estimates of system parameters are available in real time. Parameter estimation is based on the recursive least squares method and the control algorithm of the pole placement technique. Also, state observer systems are applied. State observer systems are required to estimate the states quickly and exactly without being affected by the disturbances.

  • PDF

Levitation System controlled by Output-compensation control method (출력보상형 제어기법에 의한 부상제어 시스템)

  • Sung, H.K.;Lee, J.M.;Jho, J.M.;Lee, J.M.;Yu, M.W.;Jho, H.J.;Nam, Y.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.313-315
    • /
    • 2006
  • Being controlled by a pole placement, levitation system should need many sensors that measure air-gap, velocity, acceleration, and so on. However, these sensors have observational errors by changed temperature. This paper proposed a output compensated command tracking controller for reducing the error and reducing sensors. Simulation results will be provided to show the validity of the proposed scheme.

  • PDF

A Study on Digital control of Inverter for UPS based on Disturbance Observer (외란관측기를 가지는 UPS용 인버터의 디지탈제어에 관한 연구)

  • Lee, C.D.;Kim, J.S.;Choi, S.Y.;Lee, J.C.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.606-608
    • /
    • 1996
  • In this paper, a new control scheme based on deadbeat control with disturbance observer for voltage controlled Inverter system is proposed. The inverter system is modelled as the 4th-order system treating R load current variation caused by disturbance. So the disturbance observer exists in the state observer. By using the pole placement strategy, the observer estimates the state and disturbance variable of the next sampling instant. Simulation results so show that The proposed scheme has robust feature against disturbance.

  • PDF

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

4Degrees of freedom control for a magnetically levitated vehicle

  • Kim, Kook-Hun;Kim, Choon-Kyung;Kim, Jong-Moon;Cho, Chang-Hee;Park, Min-Kook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.327-332
    • /
    • 1993
  • One maglev vehicle is composed of 6 r 8 modules. Each module is composed of 4 staggered magnets attached to an aluminum bogie. In the view point of levitation control except propulsion by LIM, 5 is the maximum degrees of freedo to be controlled. But rolling control of the vehicle depends on the bogie structure. We describe just anti-roll type out of bogie structures and 4 degrees of freedom control is sufficient for levitation quality improvement. Multivariable pole-placement concept and the decentralized control concept are used for controller design. Computer simulation and control experiment are performed on a specially designed test module.

  • PDF