• Title/Summary/Keyword: Pole Placement Controller

Search Result 152, Processing Time 0.027 seconds

Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller (적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어)

  • Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

Speed Controller Design of a Two-Inertia Motor System Using Weighted ITAE Index (가중 ITAE 지수를 사용한 2관성 모터시스템의 속도제어기 설계)

  • Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.581-589
    • /
    • 2009
  • In a two-inertia motor system with flexible shaft, a torsional vibration is often generated as a quick speed response is required. This vibration makes it difficult to achieve a quick response of speed and disturbance rejection. The objective of this paper is to provide a systematic analysis and design of the three kinds of speed controllers such as I-P, I-PD, and state feedback control by using the weighted ITAE performance index. Some simulation and experiment results verify the effectiveness of the proposed design.

Self-Tuning Adaptive Control Using State Observer (상태 관측기를 이용한 자기-동조 적응 제어)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Oh, Gi-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.223-226
    • /
    • 1991
  • In this paper, the problem of designing on adaptive controller for dc drives using state observers, which is operated under varying load conditions, is addressed. A robust self-tuning controller that can track a constant reference and reject constant load disturbances is also studied. This scheme is very attractive since the estimates of system parameters are available in real time. Parameter estimation is based on the recursive least squares method and the control algorithm of the pole placement technique. Also, state observer systems are applied. State observer systems are required to estimate the states quickly and exactly without being affected by the disturbances.

  • PDF

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

Self-Tuning PID Control of Systems with Time-Varying Delays (시변 지연시간이 존재하는 시스템의 자기동조 PID 제어)

  • 남현도;안동준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 1990
  • In this paper, we propose a self-tuning PID controller for unknown systems with time-varying delay. Using pole placement equations, we derive the controller that can be extended to the multi-step time delay case. The time-varying delays are estimated by a prediction error delay method using multiple predictors. Since the order of the estimation vector is not increased, the persistant exciting condition of control input is alleviated. Since the least square method gives biased parameter estimates for colored noise cases, the recursive instrumental variable method is used to estimate system parameters. The computational burden of the proposed method is less than the conventional adaptive methods. Computer simulations are performed to illustrate the efficiency of the proposed method.

  • PDF

Position control of robot manipulator using self-turning PID controller (자기동조 PID 제어기를 이용한 로보트 매니플레이터의 위치제어)

  • 김유택;이재호;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.41-44
    • /
    • 1988
  • This paper represents the study of an effective self-tuning PID control for a robot manipulator to track a reference trajectory in spite of the presence of nonlinearities and parameters uncertainties in robot dynamic models. In this control scheme, an error model of the manipulator is established, for the first time, by difference between joint reference trajectory and tracked trajectory. It's model Parameters are estimated by the recursive least-square identification algorithm, and classical controller parameters are determined by pole placement method. A computer simulation study was conducted to demonstrate performance of the proposed self-tuning PID control in joint-based coordinates for a robot with payload.

  • PDF

Control of Inverted Pendulum Using Continuous Time Deadbeat Control (연속계 Deadbeat제어를 적용한 도립진자 제어)

  • Kim, Jin-Yong;Kim, Seung-Youal;Lee, Keum-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.555-558
    • /
    • 2004
  • Due to the asymptotic property, deadbeat control can hardly applied to the continuous time system control. But some delay element method can deal such a problem. Except delay element method, well-known digital deadbeat control can br used with the aid of som smoothing elements. In this paper, and order smoothing element is used for the smoothing of the digital deadbeat controller. And this element is argumented to the plant, and so control problem is to control digitally the argumented system. We simulated this control system using Matlab language and finally apply this algorithm to the rotary inverted pendulum system.

  • PDF

Controller Design of a DC-DC Converter using an Optimal Control Theory (최적제어이론을 이용한 DC-DC 컨버터의 제어기 설계)

  • Lee, S.H.;Bae, E.K.;Sin, C.J.;Jeon, K.Y.;Jeon, J.Y.;Oh, B.H.;Lee, H.G.;Han, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.421-423
    • /
    • 2007
  • In this paper, The authors apply a state feedback control using an optimal control theory to improve the stability of the control and the dynamic response of the DC-DC converter system with a number of different loads. To execute a this state feedback control, The authors present the pole placement technique using Linear Quadratic Regulator(LQR) to optimally control the system. An integrator can also be included in the open-loop path in order to minimize the steady-state error of the output voltage. To confirm the superiority of the controller, The simulation results are presented.

  • PDF

A Study on the $H_{\infty}$ Robust Controller for Adaptive Control-polynomial approach (적응제어를 위한 $H_{\infty}$ 강인제어기의 설계-다항식 접근방법)

  • Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.936-938
    • /
    • 1996
  • The $H_{\infty}$ robust controller is designed for on-line adaptive control application by using polynomial approach. The $H_{\infty}$ robust controllers for adaptive system were designed first by Grimble. But they have a problem that two minimum costs can exist and did not minimize the conventional $H_{\infty}$ cost function which is the $H_{\infty}$ sum of weighted sensitivity and complementary sensitivity terms. In this paper, the two minimum costs problem can be avoided and the conventional $H_{\infty}$ cost function is minimized by employing the Youla parameterization and polynomial approach at the same time. In addition pole placement is possible without any relation with weighting function.

  • PDF

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.