• Title/Summary/Keyword: Pole Assignment Control

Search Result 102, Processing Time 0.035 seconds

Robust Adaptive Pole Assignment Control using Pseudo Plant (의사모형화 방법을 이용한 극배치 적응제어기의 강인성 개선)

  • 김국헌;박용식;허명준;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.319-326
    • /
    • 1988
  • In the presence of unmodeled dynamics, the robustness of adaptive pole assignment control using new pseudo-plant is presented. The pseudo-plant proposed by Donati et al. is modified as the gain of low pass filter can be set from zero to one. This modified pseudo-plant results in the reduction of modeling error. It is shown that not only this approach is insensitive to input frequency but also it improves the conic condition developed by Ortega et al. which is required to assure stability of adaptive control system despite the model-plant mismatch. A simple method to compensate the tracking error due to the use of pseudo-plant is considered.

  • PDF

A study on computer algorithm for pole assignment in multivariable control systems (다변수 제어계통의 극점배치를 위한 컴퓨터 앨고리즘에 관한 연구)

  • 한만춘;장성환
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.296-302
    • /
    • 1982
  • The computer algorithm and program are developed to obtain the Luenberger Canonical form and the transform matrices for linear time invariant multivariable control systems. The model controller of an eigth order system, which assigns the modes of the multivariable control systems and closed-loop matrices are computed numerically by the developed programs. It is shown that the computed results coincide with the Luenberger's and Kalman's method. The gain of the model controller has varied from 10$^{-3}$ to 10$^{5}$ by the modes assignment of the open-loop system.

  • PDF

Robust Control of Horizontal-Shaft Magnetic Bearing System considering Pole Assignment Region (극 영역을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어)

  • 김창화;추만석;양주호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.21-21
    • /
    • 2000
  • In this paper, we design the state feedback gain using linear matrix inequality(LMI) to the multiobjective synthesis, in the magnetic bearing system with integral type servo system. The design objectives can be a H$\_$$\infty$/ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-lnp pole location. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF

Complementary sensitivity characteristics in digital control systems

  • Sung, Hak-Kyung;Hara, Shinji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.868-871
    • /
    • 1990
  • We derive an intelgral-type constraint on the complementary sensitivity function in digital control systems. Some design guidances are proposed for the pole assignment of digital controller with computation-time delay to improve the complementary sensitivity characteristics.

  • PDF

Dynamic Mode Control of Flexible Robotic Arm (유연한 로보트 팔의 동적 모우드 제어)

  • 박세승;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.36-44
    • /
    • 1993
  • In the development of a high speed and light weight manipulator, it is necessary to consider the flexibility of a robotic arm. The infinite dynamics must be analyzed to obtain the finite mode modeling to achieve the feasible controller design of the robotic arm. The modeling procedures of the flexible robot arm, and natural frequencies and mode shapes by the constrained and unconstrained mode method are illustrated. The transfer function of the robot arm with a payload is also shown. The controller is designed by the pole assignment and optimal control theory to compensate for the unmodelled dynamic effects to the low order system. Also, the pole assignment method involving the harmonic vibration mode is presented through computer simulation.

  • PDF

Application of bilinear Transformation Method to Servo Sysstem Design and Position Control for a Cart System (서보계설계에 대한 쌍선형 변환법의 응용 및 카트의 위치제어)

  • 김상봉;오세준;정용길;김환성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.290-298
    • /
    • 1991
  • In the paper, the bilinear transformation method is applied to the design of servo system adopting the use of the internal model principle and the pole assignment method in a specified region. The pole assignment problem for the augmented system has been solved by using Tustin's function. The properties of Tustin's function have been shown in relation to the s-plane and z-planes, and the feedback law relationship between the original system and the transformed system has been cleared. The effectiveness of the proposed approach is proved via application for the cart system and the designed cart system is implemented by digital control with microcomputer and A-D/D-A converter.

A Pole Assignment in a Specified Disk by using Hamiltonian Properties (해밀톤 행렬의 성질을 이용한 지정된 디스크내의 극 배치법)

  • Van Giap Nguyen;Hwan-Seong Kim;Sang-Bong Kim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.707-712
    • /
    • 1998
  • 본 논문에서는 선형 시불변 시스템에 대해 상태되먹임을 이용한 폐루프계의 지정된 영역내의 극배치법을 제안한다. 본 제안된 기법은 해밀톤 행렬의 하중행렬 Q의 설정에 의해 지정된 영역 (α중심, γ반경)내에 극배치가 가능함을 보인다. 먼저, Gershgorin의 이론을 적용하기 위해 해밀톤 행렬을 등가 변환시킨 후 행렬의 각 계수를 α와 γ의 관계를 이용하여 유도한다. 위의 관계를 만족하는 해밀톤 행렬의 각 하중행렬과 변환행렬을 이용하여 폐루프계의 상태되먹임 제어칙을 구한다. 또한 본 기법은 해밀톤 행렬과 최적제어와의 관계를 지니고 있으므로 얻어진 폐루프계는 최적제어법에서와 동일한 강인함을 가지게 된다. 끝으로 예제를 통하여 지정된 영역내의 극배치가 이루어짐을 보인다.

  • PDF

Linear system analysis via wavelet-based pole assignment (웨이블릿 기반 극점 배치 기법에 의한 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1434-1439
    • /
    • 2008
  • Numerical methods for solving the state feedback control problem of linear time invariant system are presented in this paper. The methods are based on Haar wavelet approximation. The properties of Haar wavelet are first presented. The operational matrix of integration and its inverse matrix are then utilized to reduce the state feedback control problem to the solution of algebraic matrix equations. The proposed methods reduce the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity and applicability of the proposed methods.

Sliding mode control for structures based on the frequency content of the earthquake loading

  • Pnevmatikos, Nikos G.;Gantes, Charis J.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • A control algorithm for seismic protection of building structures based on the theory of variable structural control or sliding mode control is presented. The paper focus in the design of sliding surface. A method for determining the sliding surface by pole assignment algorithm where the poles of the system in the sliding surface are obtained on-line, based on the frequency content of the incoming earthquake signal applied to the structure, is proposed. The proposed algorithm consists of the following steps: (i) On-line FFT process is applied to the incoming part of the signal and its frequency content is recognized. (ii) A transformation of the frequency content to the complex plane is performed and the desired location of poles of the controlled structure on the sliding surface is estimated. (iii) Based on the estimated poles the sliding surface is obtained. (iv) Then, the control force which will drive the response trajectory into the estimated sliding surface and force it to stay there all the subsequent time is obtained using Lyapunov stability theory. The above steps are repeated continuously for the entire duration of the incoming earthquake. The potential applications and the effectiveness of the improved control algorithm are demonstrated by numerical examples. The simulation results indicate that the response of a structure is reduced significantly compared to the response of the uncontrolled structure, while the required control demand is achievable.