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Abstract

We derive an integral-type constraint on the comple-
mentary sensitivity function in digital control systems.
Some design guidances are proposed for the pole assign-
ment of digital controller with computational-time delay
to improve the complementary sensitivity characteris-
tics.

1 Introduction

In feedback control systems, the complementary sen-
sitivity function is closely related to the feedback prop-
erties such as sensor-noise attenuation and robust sta-
bility to the plant uncertainty. Some integral-type con-
straints on the complementary sensitivity function have
been proposed for continuous-time systems [1],[2] and
discrete-time control systems [3],[4;. In the digital con-
trol system, where the continuous-time plant is stabi-
lized by the digital controller, the corresponding con-
straint has been derived for the system of which the
relative degree of the open-loop transfer function is one
[5]. However, no constraints have been proposed for
the system of which the relative degree of the open-loop
transfer function is greater than one.

In this paper, we derive an integral-type constraint on
the complementary sensitivity function for SISO digital
control system with delay-time and/or computational-
time delay. This gives some guidances to the digital
control system design based on the pole assignment of
the digital controller.

2 Integral-type constraints

Consider an SISO digital control system with zero-
order hold and the sampler with sampling period 7
as shown in Fig.l, where P(s) and C(z) denote the
continuous-time plant and the digital controller, respec-
tively.

We note that the pulse-transfer function of the sam-
pled plant model P,(z) can be expressed as

Po(z) = (L - =) Z(P(s)/s] (2.1)

where Z denotes the Z-transformation. Then the com-
plementary sensitivity function 7'(z) and the sensitivity

_______ P
u () zom 2l ps) e
X

Figure 1: Digital Control System

function S(z) of the closed-loop system of Fig.1 are de-
fined by
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where L(z) := P,(z)C(z) denotes the open-loop transfer
function. Define L(A) := L(1/A) by using the transfor-
mation of 2 = 1/A, we obtain the following Lemmas

[5].

Lemma 1 If L(z) is strictly proper and the closed-loop
system shown in Fig.1 is stable, then we have

1 s~ : -
= [(1og |5 do = Y loglas]  (2.3)
{ i=1
where a;(i = 1, --,v) are strictly unstable poles of L(z).

Lemma 2 Suppose the relative degree of L(z) ism(> 1)
and its strictly unstable zeros are 3;(i = 1,- -, u). If the
closed-loop system shown in Fig.1 is stable, then we have

2 [ 1og 1T(e7%) ] do
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"
=" log |8 + log |bx| (2.4)
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where by, is the leading coefficient of the numerator of
L(z) when the denominator of L(z) is monic.



Considering the relation between the leading coeffi-
cient of L(z) and the poles of the closed-loop and open-
loop systems, we have another formula for the constraint
of T(z).

Theorem 1 Let os(i=1,---,n) end B;(j = 1,---,p)
be the poles and unstable zeros of L(z), respectively. If
the poles of the closed-loop system shown in Fig.1 are
assigned to p;( where |p;] < 1:¢=1,---,n) then the
following relation holds:
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where the notation Zja, is the sum of all the j-

combinations of o,(i = 1

efficient of (—

-+,n) and it is also the co-

1)72"4 in polynomial H(z — ;).
i=1

(Proof) (2.5) is derived from the comparison of the
open-loop and closed-loop characteristic equations. For
n

simplicity, we use the notation ¥°; or 3 instead of Z
i=1

Define L(z) as

b,,._mz"‘"' +-+biz+ by

in(z —ai)

L{z) =

(2.7)

then the pole-assignment condition yields

Z1'—Zpi2"_1+"+(—1)m mpi n——m+ + E P;
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The comparison of the coefficient of both sides in (2.8)
leads to (2.5) and

Yrai=3 " n

In order to complete the proof of (2.6), we will prove

"e| = [Ler - 7|

For m = 1, (2.10) is obvious. For m 2> 2, we consider
the following relations: (p > 2)
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Substituting (2.12) into (2.11) recursively, we obtain

=1
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+(—1)““Za$‘+(n—u) (2.13)
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and hence we have
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By replacing o; by p; in (2.14) and subtracting from
(2.14), we obtain
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For ¢ < m — 1, using the condition (2.9), (2.15) is re-
duced to
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Since the left-hand side of (2.16) is zero for p < m — 1,
(2.16) yields another condition

Saf =3t

For u = m, (2.16) is written by
") = ()T o

k+1(
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Therefore, we can see from the conditions (2.9) and
(2.17) that (2.6) holds . O

Theorem 1 is a natural extension of the result of The-
orem 2.3 in [5], which gives the constraint for m = 1.
We note that the constraint depends on the stable and
unstable poles of L(z) as well as the unstable zeros of
L(2) for the complementary sensitivity function, while
it only depends on the unstable poles of L(z) for the
sensitivity function [4].
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3 Pole-assignment
controller

of digital

In this section, we consider the pole-assignment of dig-
ital controller with 1-sample computational-time delay
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Figure 2: Region for pole-assignment
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Figure 3: Pole-assignment for dead-beat control

based on the result for the complementary sensitivity
function, Theorem 1.

In digital control system, the following assumptiona
are satisfied in general.

Assumption A: P(s) is an n,-th order strictly proper
rational function, then we have

(i) The relative degree of P.(z) is 1.

Wy np

(i) D am > 0 and Y o > 0 hold, where
=1 i1
0y(i=1,--,n,) are the poles of P,(z).

It is well-known that the assumption (i) holds for al-
most all sampling periods 7 > 0. We can easily verify
that the assumption (ii) holds if the sampling period
is selected as sufficiently small such that 7 < 7/2w)s
(where wy is the maximum value of imaginary part of
the poles in the continuous-time plant), since |Zo,| <
7/4 holds in such a case. Hence, the assumption yields
no restriction to the continuous-time plant P(s) if the
sampling period is chosen as small enough.

Assumption B: The controller C(z) has l-sample
computational-time delay 1/z, that is, C(z) = C(z)/z
where the realtive degree of C(z) is zero.

In the design of the digital controller, a design guid-
ance for the improvement of the sensitivity characteris-
tics has been proposed as follows [4],[5]:

(a) Assign poles of C(z) in the unit disk so that the
controller is stable and minimum-phase.

On the ther hand, from Theorem 1, it is desirable to
assign zeros of C(z) in the unit disk for improvement of
the complementary sensitivity characteristics.

From Assumptions A and B, we can assume the rel-
ative degree of the open-loop transfer function is 2. In
this case, the second-term of (2.6) in Theorem 1 is writ-
ten by

Ne
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(3.1)
where ay(i = 1,---,n,.) are the poles of the controller.
Based on the Theorem 1, we propose the following
guidance:

Guidance for pole-assignment of
digital controller C(z)

(1) Since Tay > 0, Bad > 0 and |pf < 1, it is de-
sirable to set £p? — La? positive and the approximate
value of 20412,‘» to improve the complementary sensitivity
characteristics. When the closed-loop poles are real, it
is desirable to assign the poles of the controller to the
shaded region in Fig.2.

(2) For the dead-beat control, it is desirable to assign

the poles of the controller so that the value of
n N p
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should be reduced. When poles of the plant are real, it
is desirable to assign the poles of the controller to region
III in Fig.3 (especially, if poles of the controller are also
real, on real axis closer to the origin).

(3.2)

We confirm the above by an example.
Example 1: Consider a digitalized plant

P(z)=(1-€")/(z—¢)
and a digital controller
C(z) = (722 + 6z 4 €)/2(z — oy)(z — ap)

The parameters of C(z) are chosen so that the closed-
loop system is dead-beat for 7 = 0.1 and a; + a3 =—¢".

Fig.4 shows that |T(e??)| for a)ay = —0.6 (ay =
—0.5052), b)ay = 0.1 {0y = —1.2052) and c)a; = 0.5
(az = —1.6052). It can be seen from Fig.4 that if we

set the poles of the controller closer to the origin, we
have the better complementary sensitivity characteris-
tics. It is also confirmed from the values of |Za?] =
a)0.6152, b)1.4625 and ¢)2.8267. Since oy + oy = —e”
and the minimum value of £a? = (o + 03)? ~ 20102
is obtained by the maximum value of aja;, we ob-
tain the best complementary sensitivity characteristic
at a; = ap; = —0.5526.

In the practical design point of view, both the comple-
mentary sensitivity and sensiticity characteristics must
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Figure 4: |T(e’*)| in Example 1

be considered. The following shows the pole-assignment
of digital controller considering both the sensitivity and
complementary sensitivity characteristics for m = 1 and
m =2,
Example 2: Consider a plant
P(z)=1/(z-1)
and a controller
C(z) = (bz —c)/(z — a)

ie., m = 1. If the closed-loop system is dead-beat, we
have b = 1+ a and ¢ = a. Fig.4 shows that |T| and ||

for the value of the pole of controller, a. Secondly, in
the case of m = 2, we consider a plant

Pyz)=1/(z - 1)
and a controller

C(z) = (bz = ¢}/ (2 — &)(z — B)
thena+f8 =-landb=1+a+o®and c = a+a’
The properties of |T'| and |S] are illustrated in Figs. 5
and 6.

Note that for the dead-beat control, it is desirable to
assign the poles of digital controllers to the left(right)-
hand side in the unit circle to improve the complemen-
tary sensitivity (sensitivity) characteristics for m = 1[5].
On the other hand, for m = 2, the poles of the controller
must assign closer to the origin to improve the comple-
mentary sensitivity characteristics [5]. Example 2 shows
that it is desirable to assign to a = —0.5 for both cases to
improve the complementary sensitivity characteristics,
however, for the sensitivity characteristic, -1 < a <0
for P3(z) (=1 € a < 1 for Pi(z)). Therefore, in the
practical design, we need to consider their tradeoffs.

4 Conclusion

Some integral-type constraints on the complementary
sensitivity function have been developed for SISO digital
control systems. Based on the results, we have proposed
several design guidances for the pole-assignment of the
digital controller in the digital control system with 1-
sample computational-time delay.
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