• Title/Summary/Keyword: Pole Assignment

Search Result 124, Processing Time 0.03 seconds

The Characteristices of Step Responses of the Manabe Standard Forms and Its Application to the Controller Desegn (Manabe 표준형의 계단 응답 특성 및 제어기설계에의 응용)

  • Gang, Hwan-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.586-592
    • /
    • 1999
  • We investigate the characteristic of 소데 responses of the Manabe standard form which is used recently for design of the controller. We obtain some theorems and these theorems have the properties of the relationship between the roots of the polynomial and the stability indices which are used for the Manabe standard form. The Manabe standard form has the following properties: The sum of the squal to zero, the sum of the reciprocal of the squared roots is greater than zero and the parameter $\tau$ is the negative value of the sum of the reciprocal of the roots. We compare the step responses of the Manabe standard form with those of the ITAE form, the dead beat response and Bessel forms. We choose the 6th order closed loop polynomial and keep the same settling time for the four forms. Under these conditions we find that the Manabe standard form have faster 90% rising time than the Bessel and dead beat response. We see that the ITAE, bessel and dead beat responses have some overshoot, whereas the Manabe standard form has none. We also compare the Manabe form with the other three forms for the controller design using the pole assignment technique. If the open loop transfer function is a type-1 system (transfer functions having one integrator), then, for the closed loop system associated with the open loop transfer function, the steady state error of the unit ramp input is obtained in terms of the parameter $\tau$ of the Manabe standard form.

  • PDF

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 저차제어기의 설계: 특성비지정 접근법)

  • Hua, Jin Li;Lee, Kwan-Ho;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.158-160
    • /
    • 2005
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTD plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller and furthermore. the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

  • PDF

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 3-파라미터 제어기의 설계: 특성비지정 접근법)

  • Jin Li-Hua;Lee Kwan-Ho;Kim Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.20-23
    • /
    • 2006
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTI) plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with the specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller. Furthermore, the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Design of Robust Controller for Systems with Time Delay (지연시간을 갖는 계통에 대한 강인한 제어기 설계)

  • 박귀태;이기상;김성호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.997-1005
    • /
    • 1990
  • Integral Error and State Feedback (IESF) controller which incorporates state feedback as a modern control scheme and integral action as a classical control scheme has better performance than that of conventional PID controller in linear time invariant system. But the structure of the IESF controller requires all the state variables of the system and is applicable only to pole assignable linear time invariant systems without time delay. Many industrial processes have large time delay and it is impossible to directly apply IESF control scheme to those processes. In this paper, a new controller structure, Modified Integral Error and State Feedback (MIESF) has been suggested in order to effectively control processes having time delay and its performance has been analyzed and its effectiveness has also been confirmed. As the proposed controller uses output feedback scheme based on integral error and state feedback (IESF) method, it can be simply designed by pole assignment algorithm irrespective of the order of the process. The MIESF controller can follow setpoint changes without overshoot. It is robuster than conventional Smith-Predictor plus PI(D) controller in case of occurring time delay mismatch and extra parameter mismatches between the process and the model. It can enhance control performance by intentional time delay mismatch.

  • PDF

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (유도탄의 유도명령 추종을 위한 혼합제어기 설계 : 공력 및 추력벡터제어)

  • 이호철;최용석;송택렬;송찬호;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.658-668
    • /
    • 2004
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories. In addition, an autopilot design method is proposed by using time-varying control technique which is time-varying version of the pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. The control allocation proposed in this paper is capable of extracting the maximum performance by combining each control effector, aerodynamic fin and thrust vectoring control. The adopted time-varying control technique for the autopilot design enhances the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulations with aerodynamic data.

Study on the I-PD Position Controller Design for Step Motor Drives

  • Yoshida, Ryo;Hirata, Yoshinori;Ochiai, Yasuzumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.536-539
    • /
    • 2004
  • In this paper, a brief discussion on I-PD position controller design for step motor drive is presented. The proposed method mainly focuses on the robustness property of the controller, which is very important for this type of system in which the variation of external load affects plant parameters. It is considered in this paper that two types of controller design methods namely; Coefficient Diagram Method (CDM), and arbitrary Pole Assignment Method (PAM) are treated and compared them. The control plant chosen for our study is a SM inherently is comprised of some non-linear elements. A the scope of the design method is limited to only linear time invariant systems, the SM modeling is approximated to linear system.

  • PDF

Application of an Adaptive Robust Controller to Cutting Force Regulation (견실한 서보적응제어기를 응용한 절삭력 추종제어)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.78-89
    • /
    • 1991
  • This Paper presents an application example of the Adaptive Robust Servocontrol (ARSC) scheme, which is an explicit (or indirect) pole-assignment adaptive algorithm with the property of "robustness". The ARSC scheme is applied to an end-milling process for cutting force regulation. It is shown that the federate of an end-milling process can be maximized by the adaptive regulation of the peak cutting force through the ARSC scheme. The results of simulation study and real cutting experiment are presented. It has been verified that asymptotic regulation can be achieved with robustness against the slowly time-varying perturbations to the process model parameters, which are caused by nonlinear cutting dynamics. dynamics.

GENERALIZATION OF A COMPLEX-SYSTEMS EQUIVALENT TRANSFORM IN THE DISCRETE SENSE

  • Koga, Masanobu;Furuta, Katsuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1699-1704
    • /
    • 1991
  • The states, inputs, outputs and parameters of a complex-system are all complex values. The introduction of such complex systems makes it more suitable to treat not only the robust control but also the pole assignment in the separate regions. The relation called "equivalence in the discrete sense" is introduced to define a complex-system corresponding to a real-system with real-axis poles as well as complex conjugate poles. The relation between the feedback-control laws of the equivalent systems in the discrete sense are derived so that their closed-loop systems should hold the equivalence in the discrete sense.ete sense.

  • PDF

A pole assignment control design for single-input double-output nonlinear mechanical systems

  • Kobayashi, Masahito;Tamura, Katsutoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.144-149
    • /
    • 1993
  • This paper discusses a design of a nonlinear control for a class of single-input double-output nonlinear mechanical systems. When conventional linearization methods are applied to the mechanical systems, some problems of oscillation and unstable phenomena arise. The proposed nonlinear control system resolves these problems. In this design the eigenvalues of the closed-loop nonlinear system are assigned to desired locations and local asymptotic stability of the closed-loop system. is guaranteed. The design method is applied to an inverted pendulum system with a moving weight mechanism. Experimental results show that the proposed nonlinear controller is more effective for stability than the usual linear controller.

  • PDF