• Title/Summary/Keyword: Polarization spectroscopy

Search Result 308, Processing Time 0.037 seconds

Analytical Study of Polarization Spectroscopy for the Jg=0 → Je=1 Transition

  • Noh, Heung-Ryoul
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.279-282
    • /
    • 2013
  • This work presents a theoretical study on the analytical calculation of the lineshape of polarization spectroscopy (PS) for the transition line $5s^2\;^1S_0{\rightarrow}5s5p\;^1P_1$ of $^{88}Sr$. From the obtained analytical form of the PS spectrum, we were able to identify how the saturation affected the lineshape of the PS spectrum. The results obtained will be useful for polarization spectroscopy experiments using the alkaline-earth atoms such as Sr or Yb.

Measurement of Glucose concentration using Polarization Sensitive Low Coherence Interferometer (Polarization Sensitive Low Coherence Interferometer를 이용한 Glucose 농도 측정)

  • 이상원;김법민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.128-129
    • /
    • 2003
  • 최근 수년간 polarimetry, Raman spectroscopy, near infrared (NIR) absorption spectroscopy, NIR scattering, optoacoustics 등의 방법을 통하여 비침습적으로 Glucose의 농도를 측정하려는 연구가 많이 시도되었다. 일반적으로 이들 방법은 sensitivity 와 signal-to-noise ratio가 매우 낮고 복잡한 알고리즘이 요구되어져 glucose 농도 측정에 한계가 있음이 드러났다. 본 연구에서는 polarization sensitive optical coherence tomography (PS-OCT)에 사용되는 polarization sensitive low coherence inter-ferometer (PS-LCI) 기법을 이용하여 비침습적으로 glucose의 농도 측정을 가능하게 하는 시스템 개발에 중점을 두었다. (중략)

  • PDF

The Orientation of CO in Heme Proteins Determined by Time-Resolved Mid-IR Spectroscopy: Anisotropy Correction for Finite Photolysis of an Optically Thick Sample

  • Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.865-872
    • /
    • 2002
  • A systematic way of determining the equilibrium orientation of carbon monoxide (CO) in heme proteins using time-resolved polarized mid-IR spectroscopy is presented. The polarization anisotropy at pump-probe delay time of zero in the limit of zero photolysis and the angular distrbution function of CO are required to obtain the equilibrium orientation of CO. An approach is developed for determining the polarization anisotropy in the zero-photolysis limit from the anisotropy measured under finite photolysis conditions in an optically thick sample where the fraction of molecules photolyzed decreased as the pump pulse passes through and is absorbed by the sample. This approach is verified by measuring the polarization anisotropy of CO of carbonmonoxy myoglobin at various levels of photolysis. This method can be readily applied to other photoselection experiments determining precise angle between transition dipoles.

Circular Polarization Spectroscopy in ^{87}Rb D_2$ line and Laser Frequency Stabilization (^{87}Rb D_2$ 전이선에 대한 원편광 분광 연구 및 레이저 주파수 안정화)

  • 문한섭;김승일;김현아;김중복;이호성
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.317-323
    • /
    • 1995
  • Doppler-free circular polarization spectroscopy in 87Rb Dz line has been carried out by using a diode laser whose linewidth was narrowed by an external cavity, and experimental results were compared with an optical pumping polarization spectroscopy theory. A dispersive spectrum obtained in a weak pump beam was completely fitted to a single cycle optical pumping theory. The laser frequency was locked to a Rb atomic hyperfine transition line without any frequency modulation by using the dispersive curve as an error signal. ignal.

  • PDF

Characteristics of Matrix Retaining Electrolyte in a Phosphoric Acid Fuel Cell Analyzed by A.C. Impedance Spectroscopy (복소임피던스법에 의한 인산형 연료전지용 전해질 매트릭스 특성)

  • 윤기현;장재혁;허재호;김창수;김태희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.189-196
    • /
    • 1995
  • Materials retaining electrolyte of a phosphoric acid fuel cell (PAFC) have been prepared with SiC powder to SiC whisker mixing ratios of 1:1, 1:2, 1:3, 1:4, 0:1 by a tape casting method. When 3wt% dispersant (sorbitan monooleate) is added to a matrix, the porosity of the matrix decreases a little while the bubble pressure and area of the matrix increase remarkably in comparison with no dispersant content. Effect of the electrolyte resistance and the polarization resistance on perfomance of a PAFC has been investigated using A.C. impedance spectroscopy. With the increase of whisker content, the electrolyte resistance decreases due to the increase of porosity and acid absorbancy, and the polarization resistance increases due to the increase of surface roughness. The polarization resistance affects current density predominantly at the higher potential than 0.7V becuase the polarization resistance is considrably larger than the electrolyte resistance. Both the electrolyte resistance and the polarization resistance affect current density near 0.7V of the fuel cell operating potential because they have similar values. The electrolyte resistance affects current density predominantly at the lower potential than the fuel cell operating potential because the electrolyte resistance is larger than the polarization resistance.

  • PDF

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.

Diffusion Coefficients of CdSe/CdS Quantum Rods in Water Measured Using Polarized Fluorescence Correlation Spectroscopy

  • Lee, Jaeran;Pack, Chan-Gi;Kim, Soo Yong;Kim, Sok Won
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.598-604
    • /
    • 2014
  • A polarization fluorescence correlation spectroscopy system based on a confocal microscope was built to study the rotational and translational diffusion of CdSe/CdS quantum rods (Q-rods), with the same and different polarization states between the polarizer and the analyzer (i.e. the XXX and XYY states). The rotational diffusion amplitude showed the dependences on polarization of $0.75{\pm}0.05$ in the XXX state and $0.26{\pm}0.03$ in the XYY state, when the translational diffusion amplitude was 1. The diffusion coefficients of the Q-rods were found based on their translational and rotational diffusion times in the two polarization states, in solutions with viscosity ranging from 0.9 to 6.9 cP. The translational and rotational diffusion coefficients ranged from $1.5{\times}10^{-11}$ to $2.6{\times}10^{-12}m^2s^{-1}$ and from $2.9{\times}10^5$ to $5.6{\times}10^4s^{-1}$, respectively.

Relative Comparison of Cathode Polarizations in Solid Oxide Fuel Cells Using the Spreading Concept in AC 2 Point Impedance Spectroscopy

  • Lee, Byung-Kook;Kim, Eui-Hyun;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • A modified two-point impedance spectroscopy technique exploits the geometric constriction between an electrolyte and a cathode with an emphasis on semispherical-shaped electrolytes. The spatial limitation in the electrolyte/electrode interface leads to local amplification of the electrochemical reaction occurring in the corresponding electrolyte/electrode region. The modified impedance spectroscopy was applied to electrical monitoring of a YSZ ($Y_2O_3$-stabilized $ZrO_2$)/SSC ($Sm_{0.5}Sr_{0.5}CoO_3$) system. The resolved bulk and interfacial component was numerically analyzed in combination with an equivalent circuit model. The effectiveness of the "spreading resistance" concept is validated by analysis of the electrode polarization in the cathode materials of solid oxide fuel cells.

Corrosion Evaluation of Epoxy-Coated Bars by Electrochemical Impedance Spectroscopy

  • Choi, Oan-Chul;Park, Young-Su;Ryu, Hyung-Yun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2008
  • Southern exposure test specimens were used to evaluate corrosion performance of epoxy-coated reinforcing bars in chloride contaminated concrete by electrochemical impedance spectroscopy method. The test specimens with conventional bars, epoxy-coated bars and corrosion inhibitors were subjected 48 weekly cycles of ponding with sodium chloride solution and drying. The polarization resistance obtained from the Nyquist plot was the key parameter to characterize the degree of reinforcement corrosion. The impedance spectra of specimens with epoxy-coated bars are mainly governed by the arc of the interfacial film and the resistance against the charge transfer through the coating is an order of magnitude higher than that of the reference steel bars. Test results show good performance of epoxy-coated bars, although the coatings had holes simulating partial damage, and the effectiveness of corrosion-inhibiting additives. The corrosion rate obtained from the impedance spectroscopy method is equivalent to those determined by the linear polarization method for estimating the rate of corrosion of reinforcing steel in concrete structures.

Electrical Properties in GDC (Gd2O3-Doped CeO2)/LSCF (La0.6Sr0.4Co0.2Fe0.8O3) Cathode Composites for Intermediate Temperature Solid Oxide Fuel Cells

  • Lee, Hong-Kyeong;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.110-115
    • /
    • 2011
  • $Gd_2O_3$-doped $CeO_2$ (GDC) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) composite cathode materials were prepared in order to be applied to intermediate-temperature solid oxide fuel cells. The electrochemical polarization was evaluated using ac impedance spectroscopy involving geometric restriction at the interface between an ionic electrolyte and a mixed-conducting cathode. In order to optimize the cathode composites applicable to a GDC electrolyte, the cathode composites were evaluated in terms of polarization losses with regard to a given electrolyte, i.e., GDC electrolyte. The polarization increased significantly with decreasing temperature and was critically dependent on the compositions of the composite cathodes. The optimized cathode composite was found to consist of GDC 50 wt% and LSCF 50 wt%; the corresponding normalized polarization loss was calculated to be 0.64 at $650^{\circ}C$.