Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.2.163

Relative Comparison of Cathode Polarizations in Solid Oxide Fuel Cells Using the Spreading Concept in AC 2 Point Impedance Spectroscopy  

Lee, Byung-Kook (Department of Materials Science and Engineering, Hongik University)
Kim, Eui-Hyun (Department of Materials Science and Engineering, Hongik University)
Hwang, Jin-Ha (Department of Materials Science and Engineering, Hongik University)
Publication Information
Abstract
A modified two-point impedance spectroscopy technique exploits the geometric constriction between an electrolyte and a cathode with an emphasis on semispherical-shaped electrolytes. The spatial limitation in the electrolyte/electrode interface leads to local amplification of the electrochemical reaction occurring in the corresponding electrolyte/electrode region. The modified impedance spectroscopy was applied to electrical monitoring of a YSZ ($Y_2O_3$-stabilized $ZrO_2$)/SSC ($Sm_{0.5}Sr_{0.5}CoO_3$) system. The resolved bulk and interfacial component was numerically analyzed in combination with an equivalent circuit model. The effectiveness of the "spreading resistance" concept is validated by analysis of the electrode polarization in the cathode materials of solid oxide fuel cells.
Keywords
Fuel Cells; Cathodes; Impedance Spectroscopy; Interfaces; Electrochemical Polarization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. C. H. Steele and A. Heinzel, "Materials for Fuel-Cell Technologies," Nature, 414 345-52 (2001).   DOI   ScienceOn
2 N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993).   DOI
3 J. Van Herle, A. J. MacEvoy, and K.R. Thampi, "A Study on the $La_{1-x}Sr_xMnO_3$ Oxygen Cathode," Electrochim. Acta, 41 [9] 1447-54 (1996).   DOI   ScienceOn
4 F. H. Van Heuveln and H. J. M. Bouwmeester, "Electrode Properties of Sr-Doped $LaMnO_3$ on Yttria-Stabilized Zirconia," J. Electrochem. Soc., 144 134-40 (1997).   DOI   ScienceOn
5 J. Mizusaki, H. Tagawa, K. Tsuneyoshi, and A. Sawata, "Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode $La_{0.6}Ca_{0.4}MnO_3/YSZ$," J. Electrochem. Soc., 138 1867-73 (1991).   DOI
6 E. Ivers-Tiffée, A. Weber, and D. Herbstritt, "Materials and Technologies for SOFC-Components," J. Eur. Ceram. Soc., 21 1805-11 (2001).   DOI   ScienceOn
7 C. Xia, W. Rauch, F. Chen, and M. Liu, "$Sm_{0.5}Sr_{0.5}CoO_3$ Cathodes for Low-Temperature SOFCs, Solid State Ionics," 149 [1-2] 11-19 (2002).   DOI   ScienceOn
8 M. Koyama, C. J. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, K. Eguchi, and H. Takahashi, "The Mechanism of Porous $Sm_{0.5}Sr_{0.5}CoO_3$ Cathodes Used in Solid Oxide Fuel Cells," J. Electrochem. Soc., 148 [7] A795-801 (2001).   DOI   ScienceOn
9 J. Newman, "Resistance for Flow of Current to a Disk," J. Electrochem. Soc., 113 501-02 (1966).   DOI
10 R. Holm, Electric Contacts: Theory and Application, 4th Editon, Springer-Verlag, New York, 1967.
11 R. Brennan and D. Dickey, "Determination of Diffusion Characteristics Using Two-and Four-Point Probe Measurements," Solid State Technol., 27 [12] 125-32 (1984).
12 R. G. Mazur and D. H. Dickey, "A Spreading Resistance Technique for Resistivity Measurements on Silicon," J. Electrochem. Soc., 113 225-59 (1966).
13 A. Casel and H. Jorke, "Comparison of Carrier Profiles from Spreading Resistance Analysis and from Model Calculations for abrupt Doping Structures," Appl. Phys. Lett., 50 989 (1987).   DOI
14 J. Fleig, F. S. Baumann, V. Brichzin, H.-R.Kim, J. Jamnik, G. Cristiani, H.-U. Habermeier, and J. Maier, "Thin Film Microelectrodes in SOFC Electrode Research," Fuel Cells, 6 [3-4] 284-92 (2006).   DOI   ScienceOn
15 W. R. Smythe, Static and Dynamic Electricity, p. 25, 3rd Edition, McGraw-Hill, New York, 1950.
16 P. Mondal and H. Hahn, "Investigation of the Complex Conductivity of Nanocrystalline $Y_2O_3$-Stabilized Zirconia," Ber. Bunsenges Phys. Chem., 101 [11] 1765-68 (1997).   DOI
17 P. S. Manning, J. D. Sirman, and J. A. Kilner, "Oxygen Self-Diffusion and Surface Exchange Studies of Oxide Electrolytes Having the Fluorite Structure," Solid State Ionics, 93 125-32 (1997).
18 B. K. Lee, J. Y. Lee, H. Y. Jung, J. H. Lee, and J. H. Hwang, "Monitoring of the LSM/YSZ Interface in SOFCs Using Limited-Contact Geometry in Impedance Spectroscopy," Solid State Ionics, 179 [21-26] 955-59 (2008).   DOI   ScienceOn
19 R. Baker, J. Guindet, and M. Kleitz, "Classification Criteria for Solid Oxide Fuel Cell Electrode Materials," J. Electrochem. Soc., 144 2427-32 (1997).   DOI