Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.5.598

Diffusion Coefficients of CdSe/CdS Quantum Rods in Water Measured Using Polarized Fluorescence Correlation Spectroscopy  

Lee, Jaeran (Department of Physics, University of Ulsan)
Pack, Chan-Gi (Confocal Microscope Core Laboratory, Asan Institute for Life Sciences, Asan Medical Center)
Kim, Soo Yong (Department of Physics, Korea Advanced Institute of Science and Technology)
Kim, Sok Won (Department of Physics, University of Ulsan)
Publication Information
Journal of the Optical Society of Korea / v.18, no.5, 2014 , pp. 598-604 More about this Journal
Abstract
A polarization fluorescence correlation spectroscopy system based on a confocal microscope was built to study the rotational and translational diffusion of CdSe/CdS quantum rods (Q-rods), with the same and different polarization states between the polarizer and the analyzer (i.e. the XXX and XYY states). The rotational diffusion amplitude showed the dependences on polarization of $0.75{\pm}0.05$ in the XXX state and $0.26{\pm}0.03$ in the XYY state, when the translational diffusion amplitude was 1. The diffusion coefficients of the Q-rods were found based on their translational and rotational diffusion times in the two polarization states, in solutions with viscosity ranging from 0.9 to 6.9 cP. The translational and rotational diffusion coefficients ranged from $1.5{\times}10^{-11}$ to $2.6{\times}10^{-12}m^2s^{-1}$ and from $2.9{\times}10^5$ to $5.6{\times}10^4s^{-1}$, respectively.
Keywords
Fluorescence correlation spectroscopy; Quantum rod; Photon counting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Magde, E. Elson, and W. W. Webb, "Fluorescence correlation spectroscopy. II. An experimental realization," Biopolymers 13, 29-61 (1974).   DOI   ScienceOn
2 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer Science+Business Media, 2006).
3 D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).   DOI
4 E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. I. Conceptual basis and theory," Biopolymers 13, 1-27 (1974).   DOI
5 R. Rigler, U. Mets, J. Widengen, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
6 P. Brazda, T. Szekeres, B. Bravics, K. Toth, G. Vamosi, and L. Nagy, "Live-cell fluorescence correlation spectroscopy dissects the role of coregulator exchange and chromatin binding in retinoic acid receptor mobility," J. Cell Sci. 124, 3631-3642 (2011).   DOI
7 C. Pack, K. Saito, M. Tamura, and M. Kinjo, "Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs," Biophys. J. 91, 3921 (2006).   DOI   ScienceOn
8 J. A. J. Fitzpatrick and B. F. Lillemeier, "Fluorescence correlation spectroscopy: Linking moleculear dynamics to biological function in vitro and situ," Current Opinion in Structural Biology 21, 1-11 (2011).   DOI   ScienceOn
9 A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996).   DOI   ScienceOn
10 X. Michalet, F. F. Finaud, L. A. Bentolia, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wi, S. S. Gambhir, and S. Weiss, "Quantum dot for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).   DOI   ScienceOn
11 M. Ehrenberg and R. Rigler, "Rotational Brownian motion and fluorescence intensity fluctuations," Chem. Phys. 4, 390-401 (1974).   DOI   ScienceOn
12 M. Ehrenberg and R. Rigler, "Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules," Q. Rev. Biophys. 9, 69-81 (1976).   DOI
13 U. Mets, Fluorescence Correlation Sepctroscopy (Springer, 2001).
14 H. S. Shin, A. Okamoto, Y. Sako, S. Y. Kim, S. W. Kim, and C. G. Pack, "Characterization of the triplet state of hybridization-sensitive DNA probe by using fluorescence correlation spectroscopy," J. Phys. Chem. A 117, 27-33 (2013).   DOI   ScienceOn
15 P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, "Separation of the rotational contribution in fluorescence correlation experiments," Biophys. J. 55, 213-220 (1989).   DOI   ScienceOn
16 M. Zhao, L. Jin, B. Chen, Y. Ding, H. Ma, and D. Chen, "Afterpulsing and its correction in fluorescence correlation spectroscopy experiments," Appl. Opt. 42, 4031-4036 (2003).   DOI
17 S. Deka, A. Quarta, M. G. Lupo, A. Falqui, S. Boninelli, C. Giannini, G. Morello, M. D. Giorgi, G. Lanzni, C. Spinella, R. Cinglani, T. Pellegrino, and L. Manna, "CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes," J. Am. Chem. Soc. 131, 2948-2958 (2009).   DOI   ScienceOn
18 N. S. Cheng, "Formula for the viscosity of glycerol-water mixture," Ind. Eng. Chem. Res. 47, 3285-3288 (2008).   DOI   ScienceOn
19 M. Muller, Indroduction to Confocal Fluorescence Microscopy, 2nd ed. (SPIE Press, Washington, USA, 2006).
20 M. Dorfschmid, K. Mullen, A. Zumbusch, and D. Woll, "Translational and rotational diffusion during radical bulk polymerization: A comparative investigation by full correlation fluorescence correlation spectroscopy (fcFCS)," Macromolecules 43, 6174-6179 (2010).   DOI   ScienceOn
21 D. S. Banks and C. Fradin, "Anomalous diffusion of proteins due to molecular crowding," Biophys. J. 89, 2060-2971 (2005).
22 C. Pack, H. Yukii, A. Toh-e, T. Kudo, H. Tsuchiya, A. Kaiho, E. Sakata, S. Murata, H. Yokosawa, Y. Sako, W. Baumeister, K. Tanaka, and Y. Saeki, "Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome," Nat. Commun. 5, 1-10 (2014).
23 J. M. Tsay, S. Doose, and S. Weiss, "Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy," J. Am. Chem. Soc. 128, 1639-1647 (2006).   DOI   ScienceOn
24 E. Hecht, Optics, 2nd ed. (Addison Wesley Publishing Company Inc., New York, USA, 1987).
25 A. Cooper, Biophysical Chemistry (Life Science Publishing Co., Cambridge, 2005).