• 제목/요약/키워드: Poisson signals

검색결과 17건 처리시간 0.022초

Error Rate for the Limiting Poisson-power Function Distribution

  • Joo-Hwan Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제3권1호
    • /
    • pp.243-255
    • /
    • 1996
  • The number of neutron signals from a neutral particle beam(NPB) at the detector, without any errors, obeys Poisson distribution, Under two assumptions that NPB scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of signals becomes a Poisson-power function distribution. In this paper, we show that the error rate in simple hypothesis testing for the limiting Poisson-power function distribution is not zero. That is, the limit of ${\alpha}+{\beta}$ is zero when Poisson parameter$\kappa\rightarro\infty$, but this limit is not zero (i.e., $\rho\ell$>0)for the Poisson-power function distribution. We also give optimal decision algorithms for a specified error rate.

  • PDF

Optimal Weights of Linear Combinations of the Independent Poisson Signals for Discrimination

  • 김주환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.307-315
    • /
    • 2002
  • Suppose one is given a vector X of a finite set of quantities $X_i$ which are independent Poisson signals. A null hypothesis $H_0$ about E(X) is to be tested against an alternative hypothesis $H_1$. A quantity $$\sum\limits_{i}\omega_ix_i$$ is to be computed and used for the test. The optimal values of $\omega_i$ are calculated for three cases : (1) signal to noise ratio is used in the test, (2) normal approximations with unequal variances to the Poisson distributions are used in the test, and (3) the Poisson distribution it self is used. A comparison is made of the optimal values of $\omega_i$ in the three cases as parameter goes to infinity.

  • PDF

A MULTI-SERVER RETRIAL QUEUEING MODEL WITH POISSON SIGNALS

  • CHAKRAVARTHY, SRINIVAS R.
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.601-616
    • /
    • 2021
  • Retrial queueing models have been studied extensively in the literature. These have many practical applications, especially in service sectors. However, retrial queueing models have their own limitations. Typically, analyzing such models involve level-dependent quasi-birth-and-death processes, and hence some form of a truncation or an approximate method or simulation approach is needed to study in steady-state. Secondly, in general, the customers are not served on a first-come-first-served basis. The latter is the case when a new arrival may find a free server while prior arrivals are waiting in the retrial orbit due to the servers being busy during their arrivals. In this paper, we take a different approach to the study of multi-server retrial queues in which the signals are generated in such a way to provide a reasonably fair treatment to all the customers seeking service. Further, this approach makes the study to be level-independent quasi-birth-and-death process. This approach is different from any considered in the literature. Using matrix-analytic methods we analyze MAP/M/c-type retrial queueing models along with Poisson signals in steady-state. Illustrative numerical examples including a comparison with previously published retrial queues are presented and they show marked improvements in providing a quality of service to the customers.

Material Characterization of Weld-Zone Using Poisson's Ratio Distribution

  • Park, Jin-Ha;Kim, Young-H.;Lee, Seung-S.;Kim, Young-Gil
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.586-590
    • /
    • 2009
  • Poisson's ratio, one of elastic constants of elastic solids, has not attracted attention due to its narrow range and difficult measurement. Transverse wave velocity as well as longitudinal wave velocity should be measured for nondestructive measurement of Poisson's ratio. Rigid couplants for transverse wave is one of obstacle for scanning over specimen. In the present work, a novel measurement of Poisson's ratio distribution was applied. Immersion method was employed for the scanning over the specimen. Echo signals of normal beam longitudinal wave were collected, and transverse wave modes generated by mode conversion were identified. From transit time of longitudinal and transverse waves, Poisson's ratio was determined without the information of specimen thickness. Poisson's ratio distribution of the carbon steel weldment was mapped. Heat affected zone of the weldment was clearly distinguished from base and filler metals.

Monotone Likelihood Ratio Property of the Poisson Signal with Three Sources of Errors in the Parameter

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제5권2호
    • /
    • pp.503-515
    • /
    • 1998
  • When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector, it follows approximately Poisson distribution. Under the four assumptions in the presence of errors and uncertainties for the Poisson parameters, an exact probability distribution of neutral particles have been derived. The probability distribution for the neutron signals received by a detector averaged over the three sources of errors is expressed as a four-dimensional integral of certain data. Two of the four integrals can be evaluated analytically and thereby the integral is reduced to a two-dimensional integral. The monotone likelihood ratio(MLR) property of the distribution is proved by using the Cauchy mean value theorem for the univariate distribution and multivariate distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem related to the distribution.

  • PDF

Poisson's Ratio Scanning Using Immersion Ultrasonic Testing

  • Oh, Seo-Young;Kim, Young-H.;Shin, Yo-Sub;Cho, Hyun-Joon
    • 비파괴검사학회지
    • /
    • 제28권6호
    • /
    • pp.519-523
    • /
    • 2008
  • Poisson's ratio is one of elastic constants of elastic solids. However, it has not attracted attention due to its narrow range and difficult measurement. Transverse wave velocity as well as longitudinal wave velocity should be measured for nondestructive measurement of Poisson's ratio. Hard couplant for transverse wave prevents transducer from scanning over specimen. In the present work, a novel measurement of Poisson's ratio distribution was proposed. Immersion method was employed for the scanning over the specimen. Echo signals of normal beam longitudinal wave were collected. Transverse wave modes generated by mode conversion were identified. From transit time of longitudinal and transverse waves, Poisson's ratio can be determined without information of specimen thickness. This technique was demonstrated for aluminum and steel specimens.

Properties of the Poisson-power Function Distribution

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.166-175
    • /
    • 1995
  • When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector without any errors, it obeys Poisson law. Under the two assumptions that neutral particle scattering distribution and aiming errors have a circular Gaussian distributions that neutral particle scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of neutral particles vecomes a Poisson-power function distribution. We study and prove some properties, such as limiting distribution, unimodality, stochastical ordering, computational recursion fornula, of this distribution. We also prove monotone likelihood ratio(MLR) property of this distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem.

  • PDF

Buffer의 동적제어에 의한 데이터 신호의 통계적 다중화에 관한 연구 (On Statistical Multiplexing of Data Signals with Dynamic Buffer Control)

  • 김낙명;은종관
    • 대한전자공학회논문지
    • /
    • 제20권3호
    • /
    • pp.61-68
    • /
    • 1983
  • 본 논문에서는 데이터 신호의 통계적 다중화에 관한 제문제들이 취급되었다. 먼저 한정된 waiting room을 가진 시스템에서 데이타 신호가 일정한 속도로 출력된다고 가정하고 batch-poisson 분포의 신호가 입력될 때의 queueing model을 검토하였다. 즉. 신호량과 신호의 평균길이를 변수로 하여 buffer의 크기, overflow의 확률 및 buffering으로 야기되는 queueing 지연시간 등을 살펴보았다. 그리고 데이터 신호의 통계적 다중화 시스템에 관한 실제 모델을 제시하여 마이크로프로그래밍을 통한 하드웨어 구현에 기본이 되게 하였다. 제안된 실제 모델은 buffer의 동적제어방식을 응용하여 설계되었으며 효율적인 I/O프로세스가 되도록 마련하였다. 끝으로. 이 시스템 모델의 성능을 알아보기 위하여 여러 조건에서의 컴퓨터 시뮬레이션을 행하였다. 이 연구로 얻어진 제반 결과는 일반적인 buffer설계에 지침이 될 수 있다.

  • PDF

신호교차로 안전성 향상을 위한 사고심각도 모형개발 (A Development of Models for Analyzing Traffic Accident Injury Severity for Signalized Intersections)

  • 하오근;허억;원제무
    • 한국안전학회지
    • /
    • 제23권2호
    • /
    • pp.65-71
    • /
    • 2008
  • As the interest in traffic safety has been increasing recently, social movement is being made to reduce the number of traffic accidents and the view on improving the mobility of the existing roads is being converted into on establishing traffic safety as a priority. The increase of traffic accidents related to an intersection in a state that traffic accidents are decreasing overall may suggests the necessity to investigate the specific causes. In addition, we have to consider them when establishing the measures against traffic accidents in a intersection by investigating and analyzing the influences and factors that may affect traffic accidents. To induce the accident severity model, we collected the factors that affect accidents and then applied the Poisson Regression Model among nonlinear regression analysis by verifying the distribution of variables. As a result of the analysis, it turned out that the volume of traffic on main roads, the right turn ratio on sub-roads, the number of ways out on sub-roads, the number of exclusive roads for a left turn, the signals for a right turn on main roads, and an intersect angle were the factors that affect the accident severity.

Exact poisson distribution in the use of NPB with aiming errors

  • Kim, Joo-Hwan
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.967-973
    • /
    • 1995
  • A neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector to estimate the mass of an object Since there is uncertainty about the location of the axis of the beam relative to the object, we could have aiming errors which may lead to incorrect information about the object. Under the two assumptions that neutral particle scattering distribution and aiming errors have a circular normal distribution respectively, we have derived an exact probability distribution of neutral particles. It becomes a Poison-power function distribution., We proved monotone likelihood ratio property of tlis distribution. This property can be used to find a criteria for the hypothesis testing problem.

  • PDF