• Title/Summary/Keyword: Poisson

Search Result 2,063, Processing Time 0.032 seconds

Poisson GLR Control Charts (Poisson GLR 관리도)

  • Lee, Jaeheon;Park, Jongtae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.787-796
    • /
    • 2014
  • Situations where sample size is not constant are common when monitoring a process with Poisson count data. In this paper, we propose a generalized likelihood ratio(GLR) control chart to detect shifts in the Poisson rate when the sample size varies. The performance of the proposed GLR chart is compared with the performance of several cumulative sum(CUSUM) type charts. It is shown that the overall performance of the GLR chart is comparable with CUSUM type charts and is significantly better in cases where the actual value of the shift is different from the pre-specified value in CUSUM type charts.

Poisson's Ratio Prediction of Soil Using the Consolidation Undrained Triaxial Compression Test (압밀비배수 삼축압축실험을 이용한 지반의 포아송비 예측)

  • Lim, Seongyoon;Yu, Seokchoel;Kim, Yuyong;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The poisson's ratio was obtained from the effective vertical stress and horizontal stress of consolidation-undrained test. It was analyzed void ratio verse poisson's ratio. At the result, the effective friction angle was increase with relative density increased, was decreased the poisson's ratio. The empirical equation of void ratio and poisson's ratio was showed very high correlation r2=0.846. The empirical equation was showed that the smaller the void ratio in the fine grained soil than granular soil. In the case of 0.85 times the correlation analysis equation of granular and fine grained soil, the experimental results were shown very similarly. In especially, the poisson's ratio prediction results was shown within 5% of the error range, was revalidation 0.85 times the correlation analysis equation using the void ratio. In this study, correlation analysis equation of the granular and fine grained soil was more reliability of the poisson's ratio prediction results apply to the void ratio than dry unit weight.

STABILITY OF HOMOMORPHISMS IN BANACH MODULES OVER A C*-ALGEBRA ASSOCIATED WITH A GENERALIZED JENSEN TYPE MAPPING AND APPLICATIONS

  • Lee, Jung Rye
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.91-121
    • /
    • 2014
  • Let X and Y be vector spaces. It is shown that a mapping $f:X{\rightarrow}Y$ satisfies the functional equation ${\ddag}$ $$2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^jx_j}{2d})-2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^{j+1}x_j}{2d})=2\sum_{j=2}^{2d}(-1)^jf(x_j)$$ if and only if the mapping $f:X{\rightarrow}Y$ is additive, and prove the Cauchy-Rassias stability of the functional equation (${\ddag}$) in Banach modules over a unital $C^*$-algebra, and in Poisson Banach modules over a unital Poisson $C^*$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras. As an application, we show that every almost homomorphism $h:\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h(d^nuy)=h(d^nu)h(y)$ or $h(d^nu{\circ}y)=h(d^nu){\circ}h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and n = 0, 1, 2, ${\cdots}$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras, and of Lie $JC^*$-algebra derivations in Lie $JC^*$-algebras.

The variation of poisson's ratio for The Cretaceous Sandstones and Shale in the Euiseoung Subbasin. (백악기 사암과 세일에 대한 포아송비의 변화)

  • 정태종
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.103-110
    • /
    • 1996
  • This study shows the variation of poisson's ratio according to stress for the Cretaceous sandstones and shale in the Euiseoung Subbasin. To make a mechanical experiment, samples prepared with 3.0 cm in diameter and 6.2 cm in length were used in testing stress and strain. Generally poisson's ratio has been considered as one of properties, but contrary to steel, the test result makes sure that poisson's ratio has functional relation to stress. I had used four methods to calculate poisson's ratio, Poisson's ratio shows considerable different results according to the calculating, method but it has similar tendency in an elastic limit. Poisson' s ratio increases rapidly and is distinguished clearly in internal fracture region according to the calculating method. Poisson's ratio of sandstone and shale is different from one another in low and high stress regimes,but it is linearly proportional to the stress in an elastic regimes, that is, ${\nu}_t={\;}{\nu}_0+P_{\sigma}({\nu}_0$:first stage Poisson's ratio, ${\nu}_t$:poisson's ratio, P: poisson's coefficient, $\sigma$:stress). Poisson's ratios of two kinds of rock samples show continuous variation from 0.1 to 0.21 in an elastic regime. The variation of poisson's ratio is much wider in an internal fracture regine. It varies from 0.22 to 0.45 in sandstone, which is out of elastic regime.

  • PDF

Recurrence Formula for the Central Moments of Number of Successes with n Poisson Trials

  • Moon, Myung-Sang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.385-391
    • /
    • 2003
  • A sequence of n Bernoulli trials which violates the constant success probability assumption is termed as "Poisson trials". In this paper, the recurrence formula for the r-th central moment of number of successes with n Poisson trials is derived. Romanovsky's method, based on the differentiation of characteristic function, is used in the derivation of recurrence formula for the central moments of conventional binomial distribution. Romanovsky's method is applied to that of Poisson trials in this paper. Some central moment calculation results are given to compare the central moments of Poisson trials with those of conventional binomial distribution.

  • PDF

Poisson's Ratio Scanning Using Immersion Ultrasonic Testing

  • Oh, Seo-Young;Kim, Young-H.;Shin, Yo-Sub;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.519-523
    • /
    • 2008
  • Poisson's ratio is one of elastic constants of elastic solids. However, it has not attracted attention due to its narrow range and difficult measurement. Transverse wave velocity as well as longitudinal wave velocity should be measured for nondestructive measurement of Poisson's ratio. Hard couplant for transverse wave prevents transducer from scanning over specimen. In the present work, a novel measurement of Poisson's ratio distribution was proposed. Immersion method was employed for the scanning over the specimen. Echo signals of normal beam longitudinal wave were collected. Transverse wave modes generated by mode conversion were identified. From transit time of longitudinal and transverse waves, Poisson's ratio can be determined without information of specimen thickness. This technique was demonstrated for aluminum and steel specimens.

Finite Element Analysis to Micro-structure with Negative Poisson's ratio (음의 프와송 비를 갖는 미세 구조체에 대한 유한요소해석)

  • 이문규;최귀원;최재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.694-697
    • /
    • 2003
  • Materials with specific micro-structural shape can exhibit negative Poisson's ratio. These materials can be widely used in structural applications because of their high resilience and resistance to impact. Specially, in the field of artificial implant's material, they have many potential applications. In this study, we investigated the Poisson's ratio and the ratio(E$_{e}$/E) of the elastic modulus of rotational particle structures based on structural design variables using finite element method. As the ratio of fibril's length to particle's diameter increased and the ratio of fibril's diameter to fibril's length decreased fixing the fibril's angle with 45 degree. the negative Poisson effect of rotational particle structures increased. The ratio of elastic modulus of these structures decreased with Poisson's ratio. The results show the reasonable values as compared with the previous analytical results.s.

  • PDF

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.

Analysis of Transport Characteristics for FinFET Using Three Dimension Poisson's Equation

  • Jung, Hak-Kee;Han, Ji-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.361-365
    • /
    • 2009
  • This paper has been presented the transport characteristics of FinFET using the analytical potential model based on the Poisson's equation in subthreshold and threshold region. The threshold voltage is the most important factor of device design since threshold voltage decides ON/OFF of transistor. We have investigated the variations of threshold voltage and drain induced barrier lowing according to the variation of geometry such as the length, width and thickness of channel. The analytical potential model derived from the three dimensional Poisson's equation has been used since the channel electrostatics under threshold and subthreshold region is governed by the Poisson's equation. The appropriate boundary conditions for source/drain and gates has been also used to solve analytically the three dimensional Poisson's equation. Since the model is validated by comparing with the three dimensional numerical simulation, the subthreshold current is derived from this potential model. The threshold voltage is obtained from calculating the front gate bias when the drain current is $10^{-6}A$.

Error Rate for the Limiting Poisson-power Function Distribution

  • Joo-Hwan Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.243-255
    • /
    • 1996
  • The number of neutron signals from a neutral particle beam(NPB) at the detector, without any errors, obeys Poisson distribution, Under two assumptions that NPB scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of signals becomes a Poisson-power function distribution. In this paper, we show that the error rate in simple hypothesis testing for the limiting Poisson-power function distribution is not zero. That is, the limit of ${\alpha}+{\beta}$ is zero when Poisson parameter$\kappa\rightarro\infty$, but this limit is not zero (i.e., $\rho\ell$>0)for the Poisson-power function distribution. We also give optimal decision algorithms for a specified error rate.

  • PDF