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Recurrence Formula for the Central Moments of 

Number of Successes with n  Poisson Trials
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Abstract

A sequence of n  Bernoulli trials which violates the constant success 
probability assumption is termed as "Poisson trials". In this paper, the 

recurrence formula for the r -th central moment of number of successes 

with n  Poisson trials is derived. Romanovsky's method, based on the 
differentiation of characteristic function, is used in the derivation of 
recurrence formula for the central moments of conventional binomial 
distribution. Romanovsky's method is applied to that of Poisson trials in 
this paper. Some central moment calculation results are given to compare 
the central moments of Poisson trials with those of conventional binomial 
distribution. 
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1. Introduction 

The Bernoulli trials are elemental to many discrete distributions including the 

conventional binomial distribution. Three assumptions underlie the conventional 

binomial distribution. Given a sequence of n  Bernoulli trials, they are;

① Each Bernoulli trial is classified as 1 under "success" and 0 under "failure",

② Probability of "success" is constant,

③ Bernoulli trials are independent. 
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Recently, researchers have moved to generalize the conventional binomial 

distribution by exploring the implications of the violation of two conventional 

assumptions ② and/or ③(Altham(1978), Drezner and Farnum(1993), Madsen(1993), 

Ng(1989), and Paul(1985, 1987)). Fu and Sproule(1995) derive the recurrence 

formula for the r -th moment of conventional binomial distribution which violates 

assumption ① using Romanovsky's reduction formula.     

The easiest modification is to allow the probability of "success" to vary from 

trial to trial (violation of assumption ②), while retaining the assumption of 

independence between trials (assumption ③). In this setting with probability p i  of 

"success" at trial i (= 1,2,3,…,n), the underlying trials are called "Poisson 

trials"(Feller 1968, p.218). With Poisson trials, the mean and variance of the 

number of successes(=Yn ) in n  trials are given as follows(Feller 1968, p.231);

μ = E (Yn ) = n p,   σ
2 = Var (Yn ) = n p ( 1- p ) - n s 2,     (1.1)

where p =
∑
n

i= 1
p i

n
 and s 2 =

∑
n

i=1
( p i- p )

2

n
.

In this paper, the recurrence formula for the r -th central moment

( r= 1,2,3,… ) of the number of successes in n  Poisson trials is derived using 

the characteristic function. 

  

2. Derivation of recurrence formula 

Romanovsky(1923) proposes the interesting recurrence relation connecting the 

central moments of the conventional binomial distribution with parameters n  and

p . That is, the r -th central moment(= μ r )  of that distribution is given by the 

following well-known recurrence formula;  

μ r= p q {n (r-1) μ r- 2 +
dμ r- 1
dp } , r= 1,2,3,… . 

Using the above formula, we can get 

μ 1 = 0, μ 2 = np q, μ 3 = np q (q- p), etc.

In this section, the recurrence relation for the central moments of the number of 

successes in n  Poisson trials is derived using Romanovsky's method. Let 

Yn= ∑
n

i=1
Xi,  where each Xi  follows Bernoulli distribution with success 

probability p i  and Xi's  are mutually independent. The random variable Yn,  
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which violates the second assumption of conventional binomial random variable, is 

the sum of n  Poisson trials. To derive the recurrence relation for the central 

moments of Yn  by Romanovsky's method, it is necessary to find the 

characteristic function of Yn . 

The characteristic function(c.f.) of Yn  referred to the mean as origin(that is, 

c.f. of Yn- E (Yn ) = Yn- μ ) is given by;

φ (Yn - μ ) ( t ) = E { exp [ i t (Yn - μ ) ] }

= exp (- i tμ ) E { exp ( i t ∑
n

i=1
Xi ) }

= exp (-θn p ) ∏
n

i=1
{ q i+ p i exp (θ) },

                 (2.1) 

where θ = i t  and i= -1 .  Differentiate (2.1) with respect to θ.  Then, 

∑
∞

i=1

μ i θ
i-1

( i-1)!
= exp (-θn p )⋅{ (-n p ) ∏

n

i=1
{ q i+ p i exp (θ) }

    + ∑
n

i=1
p i exp (θ) ( ∏

n

j≠ i
{ q j+ p j exp (θ) } ) }

= exp (-θn p )⋅{ ( exp (θ)-1) ∑
n

i=1
p iq i ( ∏

n

j≠ i
{ q j+ p j exp (θ) } ) },

where μ i  is the i-th central moment of Yn,which implies    

exp (θn p )⋅{ ∑
∞

i=1

μ iθ
i-1

( i-1)! } = { exp (θ)-1}⋅ ∑
n

i=1
p iq i ( ∏

n

j≠ i
{ q j+ p j exp (θ) } ).      (2.2)

Expanding both sides of (2.2) yields the following; 

  {1+θn p+ 1
2!
(θ n p )

2+
1
3!
(θ n p )

3 +… }⋅ {μ2θ + μ3θ
2

2!
+
μ4θ

3

3!
+… }

 = (θ+ θ
2

2!
+
θ3

3!
+… )⋅ { ∑

n

i=1
p iq i [ ∏

n

j≠ i (1+p j (θ+
θ2

2!
+
θ3

3!
+…) ) ] }        (2.3)

                   {=  (1)⋅ (2)}, 

where (1) and (2) are the first and second terms of RHS of (2.3).  

  Now, compare the coefficient of θ r- 1  on both sides of (2.3). 

L H S

=
1

(r-1)!
μ r+

n p
(r-2)!

μ r- 1+
(n p ) 2

2!(r-3)!
μ r- 2+ … +

(n p ) r- 2

(r-2)!
μ 2,   

                                                                           (2.4)

RHS: 

(i) Coefficient of θ
( r- 1)- k  in (1)

            =
1

[ (r-1)- k] !
.                                           (2.5)  
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  (ii) Coefficient of θ k  in (2) 

            = ∑
n

i=1
p iq i { ∑B ( ∏

n

j≠i

p
[ ( k+ aj )/(k+1)]

j

a j! ) },                         (2.6)
where (hereafter) the summand B  extends over all non-negative values of 

a j's ( j=1,2,…,n ; j≠ i )  such that ∑
j≠i
a j= k,  and where [ (k+a j )/(k+1)]  

denotes the greatest integer that does not exceed (k+a j )/(k+1) .    

From (2.5) and (2.6), coefficient of θ
r- 1  in RHS is given by 

∑
r- 2

k= 0 {
1

[ (r-1)- k] ! ∑
n

i= 1
p iq i [ ∑B ( ∏

n

j≠i

p
[ ( k+ aj )/(k+1)]

j

a j! ) ] }.              (2.7) 
By equating (2.4) and (2.7), we have   

1
(r-1)!

μ r+
n p

(r-2)!
μ r-1+

(n p ) 2

2!(r-3)!
μ r-2+ …+

(n p ) r-2

(r-2)!
μ 2

         = ∑
r- 2

k= 0 {
1

[ (r-1)- k] !
∑
n

i=1
p iq i [ ∑B ( ∏

n

j≠i

p
[ ( k+ aj )/(k+1)]

j

a j! ) ] }.        (2.8)  
Finally, multiplying (r-1)!  on both sides of (2.8) results in the final 

recurrence relation for the r -th central moment of Yn.  Note that μ 1 = 0.  

 μ r+ ∑
r- 1

i= 1

r-1
i( ) (n p ) iμ r- i

    = ∑
r- 2

k= 0 {
(r-1)!

[ (r-1)- k] !

∑
n

i= 1
p iq i [ ∑B ( ∏

n

j≠i

p
[ ( k+ aj )/(k+1)]

j

a j! ) ] }, r=2,3,4,….  

3.  Calculation and Comparison

In this section, the r -th central moment of some Poisson trials is calculated 

and compared with that of conventional binomial distribution. Three groups of 

p i's  are formulated according to the value of p  to include various cases as 

possible. The first group consists of four p i's  sets with p = 0.50.  The second 

and third one contain three p i's  sets each with p = 0.30  and p = 0.70 , 

respectively. For all groups, n  is set to 10 since it is found (not included in this 

work) that the comparison results do not depend on n . [Table 1] includes ten 
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p i's  sets used in the calculation. The first set(set (a)) in each group consists of 

equal p i's , so it corresponds to the conventional binomial distribution. The 

remaining seven p i's  sets are Poisson trials. Among them, set (b) of each group 

corresponds to uniformly distributed p i's , set (c) contains p i's  skewed to left, 

and set (d) skewed to right.        

The central moment(upto r = 10 ) calculation results for ten p i's  sets are given

[Table 1]: p i's  sets used in calculation

Group p               p i's       Description

  I 0.50

(a) 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 Equal p i's  

(b) 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7 Different p i's , symmetric

(c) 0.1, 0.15, 0.15, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7, 0.7 Diff. p i's , skewed to left

(d) 0.3, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4, 0.85,0.85, 0.9 Diff. p i's , skewed to right 

  II 0.30

(a) 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3 Equal p i's

(b) 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5 Different p i's , symmetric 

(d) 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.5, 0.7, 0.9 Diff. p i's , skewed to right

  III 0.70 

(a) 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7 Equal p i's

(b) 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9 Different p i's , symmetric

(c) 0.1, 0.3, 0.5, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9, 0.9 Diff. p i's , skewed to left

[Table 2] Central moment calculation results 

  Set

r

          Group I        Group II       Group III

  (a)   (b)   (c)   (d)   (a)   (b)   (d)   (a)   (b)   (c)

   2    2.5   2.30  1.905  1.905   2.1   1.9   1.32   2.1   1.9  1.32

   3     0     0  -0.23  0.23   0.84   0.60   0.40  -0.84  -0.60 -0.40

   4   17.5  14.98  10.45  10.45  12.68  10.36   5.31  12.68   10.36  5.31

   5     0     0  -3.69  3.69  16.36  10.78   5.16  -16.36  -10.78 -5.16

   6   190 152.95  92.05  92.05  128.8  93.43  37.31  128.76   93.43  37.31

   7     0     0  -59.46  59.46  320.2  193.9  70.92  -320.2  -193.9 -70.92

   8  2680 2049.8 1090.2 1090.2  1904.8  1210.7  391.4  1904.8  1210.7  391.4

   9     0     0  -1044  1044  6970.3  3859.1  1130.3  -6970 -3859.1 -1130

  10 44983.8 33000.1  15876  15876 37634.2  20918 5608.23 37634.2  20918 5608.2

in [Table 2]. As can be seen in the table, variance( r = 2 ) of the sum of n  Poisson 

trials(sets (b), (c), (d) of each group) is smaller than that of conventional binomial 
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distribution(set (a) of each group) for all groups. That is, variance of each p i's  set 

becomes smaller as p i's  get more variable in each set, which coincide with the 

result given in (1.1). Although it is difficult to derive a neat formula as (1.1) for r  

greater than 2, it is clear from [Table 2] that the even r -th central moment of 

Poisson trials is smaller than that of conventional binomial distribution for all groups, 

if n  and p  of Poisson trials are the same as the number of Bernoulli trials and 

success probability of conventional binomial distribution respectively. No clear 

comparison results on the magnitude of odd r -th central moment can be found in 

[Table 2].    

4.  Conclusion  
 

The recurrence formula for the r -th central moment of number of successes 

with n  Poisson trials is derived using Romanovsky's method, which is based on 

the differentiation of characteristic function of Yn  referred to the mean as origin. 

The central moment calculation results show that the even r -th central moment 

of Poisson trials is smaller than that of conventional binomial distribution if n  and

p  of Poisson trials are the same as the number of Bernoulli trials and success 

probability of conventional binomial distribution. For the odd r -th central moment 

comparison, no clear conclusions can be made.   
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