• Title/Summary/Keyword: Point to Mesh

Search Result 361, Processing Time 0.023 seconds

A Study on Medial Surface Extraction from Point Samples on 3D Closed Surfaces in Shell Shapes (셸 형상의 3차원 폐곡면상에서 추출된 점데이터군으로부터 중립곡면 계산에 관한 연구)

  • Woo, Hyuck-Je
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • In this study, new medial surface calculation methods using Voronoi diagrams are investigated for the point samples extracted on closed surface models. The medial surface is defined by the closure of all points having more than one closest point on the shape boundary. It is a one of essential geometric information in 3D and can be used in many areas such as 3D shape analysis, dimension reduction, freeform shape deformation, image processing, computer vision, FEM analysis, etc. In industrial parts, the idealized solid parts and shell shapes including sharp edges and vertices are frequently used. Other medial surface extraction methods using Voronoi diagram have inherent separation and branch problems, so that they are not appropriate to the sharp edged objects and have difficulties to be applied to industrial parts. In addition, the branched surfaces on sharp edges in shell shapes should be eliminated to obtain representative medial shapes. In order to avoid separation and branch problems, the new approach by analyzing the shapes and specially sampling on surfaces has been developed.

SHVC-based Texture Map Coding for Scalable Dynamic Mesh Compression (스케일러블 동적 메쉬 압축을 위한 SHVC 기반 텍스처 맵 부호화 방법)

  • Naseong Kwon;Joohyung Byeon;Hansol Choi;Donggyu Sim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.314-328
    • /
    • 2023
  • In this paper, we propose a texture map compression method based on the hierarchical coding method of SHVC to support the scalability function of dynamic mesh compression. The proposed method effectively eliminates the redundancy of multiple-resolution texture maps by downsampling a high-resolution texture map to generate multiple-resolution texture maps and encoding them with SHVC. The dynamic mesh decoder supports the scalability of mesh data by decoding a texture map having an appropriate resolution according to receiver performance and network environment. To evaluate the performance of the proposed method, the proposed method is applied to V-DMC (Video-based Dynamic Mesh Coding) reference software, TMMv1.0, and the performance of the scalable encoder/decoder proposed in this paper and TMMv1.0-based simulcast method is compared. As a result of experiments, the proposed method effectively improves in performance the average of -7.7% and -5.7% in terms of point cloud-based BD-rate (Luma PSNR) in AI and LD conditions compared to the simulcast method, confirming that it is possible to effectively support the texture map scalability of dynamic mesh data through the proposed method.

A Study on Cross-sectioning Methods for Measured Point Data (측정 점데이터로부터 단면 데이터 추출에 관한 연구)

  • 우혁제;강의철;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.272-276
    • /
    • 2000
  • Reverse engineering refers to the process that creates a physical part from acquiring the surface data of an existing part using a scanning device. In recent years, as the non-contact type scanning devices become more popular, the huge amount of point data can be obtained with high speed. The point data handling process, therefore, becomes more important since the scan data need to be refined for the efficiency of subsequent tasks such as mesh generation and surface fitting. As one of point handling functions, the cross-sectioning function is still frequently used for extracting the necessary data from the point cloud. The commercial reverse engineering software supports cross-sectioning functions, however, these are only for cross-sectioning the point cloud with the constant spacing and direction. In this paper, adaptive cross-sectioning point cloud which allow the changes of the spacing and directions of cross-sections according to the constant spacing and direction. In this paper, adaptive cross-sectioning algorithms which allow the changes of the spacing and directions of cross-sections according to the curvature difference of the point cloud data are proposed.

  • PDF

3D geometric model generation based on a stereo vision system using random pattern projection (랜덤 패턴 투영을 이용한 스테레오 비전 시스템 기반 3차원 기하모델 생성)

  • Na, Sang-Wook;Son, Jeong-Soo;Park, Hyung-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.848-853
    • /
    • 2005
  • 3D geometric modeling of an object of interest has been intensively investigated in many fields including CAD/CAM and computer graphics. Traditionally, CAD and geometric modeling tools are widely used to create geometric models that have nearly the same shape of 3D real objects or satisfy designers intent. Recently, with the help of the reverse engineering (RE) technology, we can easily acquire 3D point data from the objects and create 3D geometric models that perfectly fit the scanned data more easily and fast. In this paper, we present 3D geometric model generation based on a stereo vision system (SVS) using random pattern projection. A triangular mesh is considered as the resulting geometric model. In order to obtain reasonable results with the SVS-based geometric model generation, we deal with many steps including camera calibration, stereo matching, scanning from multiple views, noise handling, registration, and triangular mesh generation. To acquire reliable stere matching, we project random patterns onto the object. With experiments using various random patterns, we propose several tips helpful for the quality of the results. Some examples are given to show their usefulness.

  • PDF

Rack Force Estimation Method using a Tire Mesh Model (TIRE MESH 모델을 활용한 랙추력 추정법 개발)

  • Kim, Minjun;Chang, Sehyun;Lee, Byungrim;Park, Youngdae;Cho, Hyunseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2014
  • In this paper, a new estimation method is proposed to calculate steering rack axial force using a 3 dimensional tire mesh model when a car is standing on the road. This model is established by considering changes of camber angle and contact patch between the tires and the ground according to steering angle. The steering rack bar axial force is estimated based on the static equilibrium equations of forces and moments. A tire friction force is supposed to act on the center point of the contact patch, and the proportional coefficient of friction depending on contact patch is suggested. Using the proposed estimation method, rack axial force sensitivity analysis is evaluated according to changes of suspension geometry. Then optimal motor power of Motor Driven Power Steering(MDPS) is evaluated using suggested rack forces.

Surface Extraction from Point-Sampled Data through Region Growing

  • Vieira, Miguel;Shimada, Kenji
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • As three-dimensional range scanners make large point clouds a more common initial representation of real world objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses principal component analysis to estimate the surface variation at each point. After defining conditions for determining the geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results on large point clouds acquired from real-world objects.

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

Procedural Modeling Algorithm for Traditional Stone Fence Creator (전통 돌담 생성을 위한 절차적 모델링 알고리즘)

  • Park, Kyeongsu
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.205-212
    • /
    • 2013
  • In this paper, we present a procedural modeling algorithms to create Korean traditional stone fence using the fractal subdivision. The main process of the algorithm is to get the next step mesh by subdividing each triangle in the previous step triangular mesh. This process is repeated recursively. Dividing each triangle into four sub-triangles after choosing a random point on each side of the triangle and moving each vertices in the normal direction with random perturbations make the bumpy appearance of stone fences. In each step we remove flat vertices which does not influence the shape of the stone. The discrete curvature determines the flatness of a vertex. New triangles whose vertices are the vertices around the removed vertex are added to make a triangular mesh.

Survey on the Authentication and Key Management of 802.11s

  • Lam, Jun Huy;Lee, Sang-Gon;Tan, Whye Kit
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.89-92
    • /
    • 2012
  • Wireless Mesh Network expanded the capability of the conventional wireless networking by allowing the nodes to operate in proactive mode, reactive mode or the combination of both, the hybrid mode in the multi-hopping nature. By doing so, the links between the nodes become much more robust and reliable because of the number of paths to reach a destination node from a source node can be more than 1 and do not need to rely on the access point (AP) alone to relay the messages. As there may be many possible ways to form an end-to-end link between 2 nodes, the routing security becomes another main concern of the 802.11s protocol. Besides its reliance on the 802.11i for the security measures, 802.11s also includes some new features such as the Mesh Temporal Key (MTK) and the Simultaneous Authentication of Equals (SAE). The authentication and key management (AKM) process of 802.11s were observed in this paper.

  • PDF

SCHWARZ METHOD FOR SINGULARLY PERTURBED SECOND ORDER CONVECTION-DIFFUSION EQUATIONS

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.181-203
    • /
    • 2018
  • In this paper, we have constructed an overlapping Schwarz method for singularly perturbed second order convection-diffusion equations. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region we use the central finite difference scheme on a uniform mesh while on the non-layer region we use the mid-point difference scheme on a uniform mesh. It is shown that the numerical approximations which converge in the maximum norm to the exact solution. When appropriate subdomains are used, the numerical approximations generated from the method are shown to be first order convergent. Furthermore it is shown that, two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantages of this method used with the proposed scheme is it reduces iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.