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Abstract - As three-dimensional range scanners make large point clouds a more common initial representation of real world 
objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting 
smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses 
principal component analysis to estimate the surface variation at each point After defining conditions for determining the 
geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points 
whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region 
growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines 
the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can 
be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and 
requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results 
on large point clouds acquired from real-world objects.
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1. Introduction

Point clouds are becoming an increasingly common 
initial digital representation of real-world objects. This 
is due to the popularity of affordable and accurate 
scanning equipment that can quickly digitize the 
geometry of a real-world object. However, the res니Iting 
point cloud representing an objecfs surface can often 
contain millions of three-dimensional points. This large 
size and the noise associated with measurement can 
make processing the data difficult. Nevertheless, there 
are many applications where it is necessary to create a 
computer model consisting of just a few simple surfaces 
from the point-cloud data. Acc니rately reconstructing the 
object^ geometry in this way is often a difficult and 
time-consuming task. In this work, we present a method 
for automatically extracting surfaces from point-이oud 
data that works quickly and minimizes the memory 
overhead of handling large data sets. Our surface 
extraction technique segments the point cloud and has 
the potential to be used in surface reconstruction, 
reverse engineering, industrial design, and rapid 
prototyping.

Surface extraction thro니gh region growing is founded 
on the assumption of surface coherence [11,38]. This is 
the observation that, despite the presence of noise, 
almost every point sampled from an object's surface 
will be geometrically related to its nearby points in that 

they will all lie near a sin인e, smooth surface. 
Furthermore, it implies that the connectivity information 
of a triangle mesh can be replaced by spatial proximity 
of the sampled points if the point cloud is sufficiently 
dense. Our algorithm exploits this property to 
automatically organize the point 이이id into distinct 
regions approximated by simple surfaces.

Our method iterates between region growing and 
surface fitting to automatically find sets of points that 
can be closely approximated by single surfaces. Given 
a set of N points X= sampled from a
surface in R3 and a seed point xh our algorithm 
attempts to find a parametric surface b(z/,v) and a 
maximal set of points Rb, such that every point in Rb is 
geometrically compatible with b(z/,v). We define a 
point to be geometrically compatible with a surface if 
its position and normal differ from the nearby surface 
by small amounts. In this presentation, we assume all 
points have consistently oriented normals N = {n0,..., 

If the normal data is not available, then it can be 
calculated from a mesh representation, from the laser 
scanner acq니isition process, or by estimating the tangent 
plane of each point and then propagating normals along 
a minimum spanning tree as described in [19].

The algorithm presented here, summarized in Algorithm 
1, first partitions the bounding box of X into a cubical 
grid for efficient nearest-neighbor searching. Then it 
attempts to grow a region from each point xgX in 
order of increasing surface variation o^(x), determined 
by principal component analysis. Region growing first 
checks if a small neighborhood, the seed region S(x), 

around a point can be approximated with a single 
surface 加湖(％u). If so, the compatible points in the
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(a) Surface variation (100,000 points)

Fig. 1. Different surface extraction steps for an automobile C-pillar.

(b) Points assigned to surfaces

EXTRACT-SURFACES( X)

Find x, y, z extents of X and partition domain into a cubical grid 

for each xeX, calculate and store distance to k-nearest neighbors 

for each x c X, calculate and store cr^(x)

for each x 6 X zn order of increasing surface variation 

if LABELED( x), continue (skip to next point) 

construct S(x) andfind 

bgr(") = 

CLEAR(Ry) 

do

Rbq/d =

b0/j(w,v) = b„eH,(u,v)

REGION-GROWING] S(x), bnew(u, v), RbjWlv) 

袖讹(队“시 >|R b,시)

Rb — Rb.o/d

b(旳 v) = b。汩

else

Rb = Rbsew 

b(u,v)-bneiv(w,v)

create new region from Rb and b(사, v)

Algorithm 1. Pseudocode fbr the surface extraction algorithm.

seed region define a new region Rb,Mew and the algorithm 
adds to this new region all nearby points geometrically 
compatible with the surface. Once all compatible points 
have been added, the algorithm fits a new surface 
bwew(w,v) to the entire region and repeats the region 
growing. A final surface b(w,v) is extracted when the 
number of points in the region stops increasing. The 
different steps of the algorithm are illustrated in Fig. 1. 
Fig. 1(a) shows the point colored by surface variation, 
Fig. 1(b) shows the points colored according to different 
underlying surfaces, and Fig. 1(c) shows the extracted 
surfaces painted with the same colors as the points they 
represent. Note that in all of our examples the point 
clouds appear continuous because they are dense 
enough that there is more than one point per pixel.

Our region growing approach for surface extraction 
is intuitive, efficient, and straightforward to implement. 
By reducing the data representation to only what is 
essential, we eliminate the need for a mesh data 
structure and reduce the algorithmic complexity and 
memory requirements fbr processing the data. This 
allows users to process larger data sets, including not 
just point clo니ds, b니t also parametric and polygonal 
data, which one can easily convert into dense point 
clouds. Our algorithm can extract parametric surfaces 
from sets of millions of points in minutes with 
guaranteed approximation errors. Furthermore, one can 
speed up the surface extraction by simplifying the point 
이o나d as in [29] without creating a mesh. Finally, the 
region-growing algorithm can be easily adapted so that a 
user can simply click on a point cloud to automatically 
extract surfaces from it.

2. R이ated Work

Surface reconstruction from point clouds has 
received considerable study and continues to do so. 
There are several existing methods fbr generating a 
piecewise-linear mesh from a point cloud [13, 19, 5, 6], 
There are also methods fbr reconstructing a smooth or 
piecewise-smooth surface from a point cloud [16, 7, 
27, 26, 12, 20]. However, fbr our target applications, 
creating an approximating mesh from the point clo니d is 
umecessary. Furthermore, a fully automatic smooth or 
piecewise-smooth surface reconstruction that results in 
an implicit surface or a tiling of many triangular or 
rectangular patches is difficult fbr a designer or modeler 
to modify and cannot produce large surfaces of 
acceptable quality for consumer product styling. More 
recently, point clouds have also received attention as a 
potential rendering primitive because of their compactness 
and the increasing commonness of very large data sets 
[23,31,34,4, 1,2,3].

Our region growing method is similar in principle to 
existing methods fbr automatically partitioning meshes 
into regions that can be easily parameterized. For example, 
[24, 15] use an s-source adaptation of Dijkstia's shortest- 
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path algorithm to segment a mesh. On point clouds, 
[28] grows regions by enfbrcin흠 a normal cone condition, 
requiring that the largest angle spanned by the point 
normals in a region is below a certain threshold. The 
present region growing method is more specific than 
these, requiring that both the positions and the nonnals 
of points are close to that of an underlying sui'face.

Our surface extraction algorithm can also be viewed 
as a complement to existing algorithms for extracting 
features from point clouds [18, 30], These papers apply 
principal component analysis to a point cloud to detect 
features then use a minimum spanning graph of the 
feature points to extract sharp edges. Pauly, et al. [30] 
further model the extracted edges with adaptive contoui*  
models. In our approach, we use principal component 
analysis to find the areas of smallest variation, then use 
region growing to find clusters of points lying near 
smooth surfaces. While feature extraction is most suitable 
for mesh generation and non-photoi*ealistic  rendering, 
surface extraction is useful for reverse engineering, 
surface reconstruction, and industrial design.

The concept of growing regions to find groups of 
points that can be approximated by surfaces was 
introduced for images by [11? 10] and adapted for 
gridded height data in [36]. In [39, 38], the present 
authors applied the region growing approach to segment 
dense, unstructured meshes. In this paper, we further 
extend the region growing approach into a method for 
automatic surface extraction from point clouds. As 
widespread use of modem measurement equipment 
makes very large data sets more ubiquitous, operating 
directly on the point cloud becomes more desirable. By 
utilizing only the necessary data, the amount of 
computer memory req나ifed for analysis becomes a 
fraction of what is required for maintaining a mesh 
data structure.

The work done by Huang and Menq and Benko and 
Varady is most similar to ours. The method proposed 
by Huang and Menq [21, 22] first constructs a mesh 
from the point cloud, then segments it and fits B-spline 
surfeces to the segments. However, the assumptions 
and complexity of the approach make it unfeasible for 
very large data sets. The method presented by Benko 
and Varady [8, 9] is more closely related to ours. It 

applies a hierarchy of tests to recursively subdivide a 
point cloud into small regions that can be approximated 
by a single analytic s니茂ice such as a plane, cylinder, 
cone, sphere, or torus. However^ it is not clear that such 
an approach can be used on point clouds representing 
free-form surfeces.

3, Surface Extraction Algorithm

3.1. Seed point selection
Our algorithm begins with a single point, called a 

seed point, for the extraction of each surface. A small 
neighborhood around the seed point is then used to find 
an initial surface approximation for region growing. 
Intuitively then, region growing will be most effective 
when the seed point is interior to a large group of 
points lying near a single surface. We choose a simple, 
fast heuristic method to select seed points, first estimating 
the surface variation at each point in the point cloud, 
then examining the points in order of increasing surface 
variation. This makes the reasonable assumption that 
region growing will be more successful in areas with 
low variation than in areas with high variation. In 
addition, as surfaces are extracted from the point cloud, 
potential seed points can simply be skipped if they are 
already assigned to regions.

The surface variation at each point is calculated using 
principal component analysis, a technique commonly 
used to estimate local surface properties of point clouds 
[29, 18, 30]. It is illustrated in Fig. 2. The technique 
can be understood as analogous to finding the mean 
and variance of a one-dimensional distribution. Let 
N(xz) be the ^-nearest neighbors of a point X/sX. 
Denoting by x the centroid of N(x；), we can define the 
3x3 covariance matrix C by

c= £ (y-x)-(y-x)" (1)

y e N(xf.)
This matrix is symmetric and positive 읂emi-deHnite 
with real eigenvalues and corresponding
eigenvectors 잫加 v!5 v2 forming an orthogonal basis of 
R3. The eigenvalues A； measure the variance of N(xz) in 
the directions In particular, v0 estimates the surface 
nomial of x； (up to sign) and the plane through x 

(a) Input point cloud (200,000 points)

Fig. 2. The eflfects of varying neighborhood size on surfece variation estimation for a golf club head.

(b) Surface variation using few 
nearest neighbors

(c) Surface variation using many 
nearest neighbors
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spanned by Vj and v2 approximates the tangent plane at 
x；[29, 19].

Therefore, 4)quantifies the deviation of N(x;) from 
the tangent plane and we can define the scale-invariant 
s니dhce variation of the /c-nearest neighbors as

z “0

지%尸爲侦" (2)

As shown in Fig. 2, this measure of variation 
distinguishes clearly between curved and flat regions.

3고. Region growing

Region growing first finds a small set of points near 
the seed point and approximates this neighborhood 
with an initial surface. The region then grows by 
clustering points that are geometrically compatible with 
the approximating surface. Once all compatible points 
have been added, the algorithm fits a new surface to the 
region to improve the approximation. The algorithm 
then uses this new surface to re-grow the region. This 
process is repeated until the region size stops increasing.

As we progress through the point cloud, we attempt 
to approximate the neighborhood of each point x； with 
a surface. We first check if 阳 has been labeled as 
belonging to a region. If so, we simply skip it. If not, 
we construct a seed region S(xf) of all the 니出abeled 
points within a radius ps of x；:

S(x)= (xgX| J x-x；I <ps and x is unlabeled}.

A seed re이on is illustrated in 2D in Fig. 3. If S(x;) 

does not contain enough points for surface fitting, we 
move on to the next seed point, leaving x; unlabeled. 
Otherwise, we fit a surface to the seed region S(xz) as 
described in Section 3.3. The radius ps should be 
chosen to allow enough points for surface fitting but 
not so many that it includes points that may correspond 
to other surfoces, We discuss its selection in Section 4.

Each region formed by the algorithm is a set of 
points geometrically compatible with the region's 
underlying surface. We define geometric compatibility 
in a G° and G1 sense. For a point x, a parametric surface 
b(w,v), and parameters (w,v) that minimize the distance

Fig. 3. Seed region selection. The points in the seed region are 
filled with gray. The initial surface is fit only to the points in the 
seed region.

Fig. 4. Geometric compatibility. Only one point, filled with gray, is 
geometrically compatible with the surface. The dotted curves 
represent the G° compatibility threshold.

from x to b(w,v), we say the point is Gu compatible 
with the surface if

|x-b(M,v)|<^0 (3)

and G1 compatible if

cos-l(n,nb)〈A (4)

where n is the point normal, nb is the surface normal at 
(",V),

b„(M,v)xb„(M,v) (5)
% |b“(Q)xb，®,개

and d is in radians. All the different possible cases of 
compatibility and non-compatibility are shown in Fig. 
4. The dotted lines show the shortest paths to the 
surface and thus imply the direction of the surface 
normal nb at the position on the surfece nearest to each 
point. When point normals deviate too much, the points 
are incompatible with the surface. The compatibility 
thresh이ds # and 4 are the only user-defined parameters. 
They can be determined automatically as described in 
[38], but to increase interactivity and to decrease 
computation, we leave them _to the 니ser in this 
presentation. The parameters (z/,v) of the point on the 
surface closest to x are determined by first coarsely 
sampling points on the surface and then using the 
closest point to as x the initial value for a Newton 
iteration that minimizes the distance from the surface 
to x. A detailed description of this process is given in 
[32].

Now that we have defined geometric compatibility, 
we can present the algorithm for region growing. Given 
a seed region S(xz) and a parametric surface b(w,v), the 
first region growing step labels all the compatible 
points in S(xz) and adds them to the region Rb. These 
points are also inserted into a que니e Q used for region 
growing. The algorithm dequeues points and checks 
their Ar-nearest neighbors for any unlabeled points. If 
any of these unlabeled points are compatible with 
b(w,v), the algorithm inserts them into the queue. This 
continues until the queue is empty. This can be written 
in pseudocode as an Algorithm 2, where the function
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REGION-GROWING( S(xz), b(% v),Rb) 

CLEAR( Rb )

CLEAR(g)

for each x g S(xz)

if x compatible with b(% v) 

LABEL( x) 

INSERT(Rb,x)

ENQUEUE(g,x)

GROW(Rb,g, b(w,v))

Algorithm 2. This function grows a region given a seed region and 
an initial approximating surfoce.

GROW(Rb，0 b("))

while NOT-EMPTY(g)

x 스- DEQUEUED)

N(x) <- k-nearest neighbors of x

for each y e N(x)

if y unlabeled and compatible with 

b(w,v) 

LABEL(y) 

INSERT(Rb,y)

ENQUEUE(Q,y)

Algorithm 3. The GROW function, called in Algorithm 2, uses a 
queue and nearest-neighbor searching to grow the region.

GROW that grows each region can be written as in 
Algorithm 3.

Once the region growing is complete, we fit a new 
surfece to the points in Rb and repeat the region 
growing process with S(x;) and the new surface. As 
shown in Algorithm 1, we temporarily store the region 
points and underlying surface for each iteration 니ntil 
the region size does not increase from one iteration to 
the next. In this case, we stop region growing and use 
the larger of the current and previous regions and its 
corresponding underlying surface. This iterative proced니re 
maximizes the size of each region while improving the 
quality of the approximating surface.

3.3. Surface fitting

The region growing framework is quite general and 
can be used with a variety of surfaces. The algorithm 
can be 니sed with any class of surfaces that allows 
approximation (for surface fitting), differentiation, and 
point projection (for testing geometric compatibility). 
We implemented the region growing algorithm with 
non-rational bicubic Bezier surfaces because they are 
easy to manage yet representative of surfaces 
commonly used in computer-aided design. They can be 
expressed as

b(m) = ££p/("期(0，。京,uVl, (6) 
片 Q/=0

where the B：(이) are the n虬degree Bernstein polynomials. 
Given parameters (w,v) for each point in the region Rb, 
we can write an overdetermined system of linear 
equations that can be solved for the control points Pz7 
니sing linear least squares [17,33]. However, determining 
quality parameters for each point is often subtle [37, 25].

We adopt a fast and simple scheme for point 
parameterization that has given good res니Its in all。니r 
test cases. Given the points Rb in a region, we calculate 
the plane perpendicular to a weighted average of the 

point norm시s. We first find the centroid x of the 
points in the region and the maximum squared distance 
from any point to the centroid,

元ax = max'A지2. (7)

The plane normal is the Gaussian-weighted average of 
the point normals in the region 

ZgW冋

I x,.eRb^ '
w?=exp

l|x-x,-|2

2洁
(8)

where a is chosen s니ch that exp[-l/2((imax/1. 
We then project the points in Rb onto the plane defined 
by x and n and rotate them in-plane so that the area of 
their axis-aligned bounding box is minimized. The in­
plane coordinates are then linearly scaled so that each 
point in Rb is assigned parameters (w,v) such that 
a<uy<\-a. The constant a is necessary because the 
Bezier s니r您ces are only defined for a< w,v<l and the 
region needs room to grow. In our implementation, we 
use a= 0.25.

Once we have found parameters for each point, we 
can perform surface fitting with linear least squares. 
Although this initial surface approximation is often 
adequate, we can improve the fit accuracy by projecting 
the points back onto b(w,v) to find new parameters for 
them. These new parameters can then be used to fit a 
new surface to the region with linear least-squares. We 
use three iterations of this in our implementation.

4. Results and Implementation

We implemented the algorithm as described in Section 3. 
Our current program can take in mesh or point-normal 
data and output control points for the parametric 
surfaces approximating the data.

For principal component analysis and region growing,
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Table 1. Results with execution times and memory usage.

Model Num.
Points

Thresh.
Angle

Peak
RAM

Time
(secs)

C-pillar 99,790 5° 25 MB 24
Rear Fender 1,065,886 6° 90 MB 255
Front Door 1,497,459 5° 125 MB 288

we find the ^-nearest neighbors with k= 10. To make 
the nearest neighbor searches faster, we precompute the 
radius p, of the ball that contains the 10-nearest neighbors 
of each point xz. This eliminates the need for sorting or 
maintaining a priority q니e니e when making nearest 
neighbor queries. For creating seed regions, we 니sc the 
points in a ball of radi니s ps = 3p.

Table 1 shows the memory use and time for region 
growing. We do not include the time required for 
principal component analysis because it is a standard 
analysis tool and takes only a few seconds for even the 
largest models. A thresh이d distance of 0.3 mm was 
used for all the examples, so it is also elided. In 
practice, threshold distance can be easily determined 
based on the laser-scanner tolerances. The threshold 
angle is more application dependent. The algorithm 
extracts surfaces from relativ이y small models in 
seconds and takes j냐st minutes for the largest models. 

Also, processing a point cloud takes considerably less 
RAM than processing a mesh. Our implementation 
approaches approximately 80 bytes per point for large 
models. In our experience, this is less than 25% of the 
RAM required to hold a mesh data str니ct니re with faces 
and edges representing the same data. Our tests were 
run on an AMD Athlon 64 2.2 GHz processor with 2 
GB of RAM.

Fig. 5 shows point clouds on the left and extracted 
surfaces on the right. The points in each region and 
their underlying surface have the same color. Notice 
that the algorithm can extract surfaces from large 
regions, often with a sin이e surface representing hundreds 
of tho니sands of points. For visualization clarity we 
rendered the surfaces for 0.25 < uy <0.75. The surfaces 
have otherwise not been trimmed to correspond to the 
point-set geometry.

Fig. 6 demonstrates the quality of the extracted 
surfaces by simulating reflection lines on the point 
cloud. The Fig was created by using the point normals 
to map a cylindrical light-strip texture onto the points. 
For the res니Its, we projected labeled points onto the 
surfaces and assigned them the corresponding surface 
normals. Note that, in general, not all points were 
assigned to regions. In the figs, only labeled points are 
displayed.

(b) Front Door(1.5 million points)

Fig. 5. The point clouds colored by region labels and the extracted surfaces.
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(a) Reflection lines on C-pillar raw data (100,000 points) (b) Reflection lines on extracted surfaces

(c) Reflection lines on rear fender raw data (1,000,000 points)

Fig. 6. Simulated reflection lines on point cloud data before and after surface extraction.

(d) Reflection lines on extracted surfaces

5. Discussion

Our implementation processes point clouds in-core, 
requiring the entire point cloud in main memory. The 
most important requirement of the data structure for 
processing the point cloud is fast and efficient nearest- 
neighbors queries. For this, one can use hierarchical 
space-partitioning data structures such as octrees [35] 
or kd-trees [14], but finding nearest neighbors with 
these is logarithmic in N. For a large point cloud, 
region growing may make h니ndreds of millions of 
nearest-neighbors queries, making logarithmic time 
complexity unacceptable. Therefore, we exploit the fact 
that our data is somewhat uniformly distributed and 니se 
a simple cubical 3D grid data structure that allows 
nearest-neighbor queries in constant time with modest 
memory overhead. We first find the axis-aligned 
bounding box of the input data and calculate its volume. 
Then, we use the volume to partition it into K cubes 
where K -N. This partitioning induces a hash on the 
point coordinates, and each cube in the grid contains 
pointers to the points it contains. If the radius that 
contains the k-nearest neighbors is pre-computed, as in 
our implementation, then the nearest neighbors may be 
found with。니t sorting, making ^-nearest neighbors 
queries an O(k) operation.

For each of the N points, we store the position and 
normal information along with the region number and 
the radius fbr nearest neighbor searching. The grid 

requires approximately B(N 十K) bytes, where 5 = 4 on 
32-bit architecture and 5 = 8 on 64-bit architecture and K 
is the number of grid cubes. We note in passing that, if 
there is sufficient memory, pointers to nearest neighbors 
can be stored explicitly for each point, making nearest- 
neighbor searching an (9(1) operation during region 
growing. This can speed up the algorithm dramatically.

Also during region growing, when fitting a parametric 
surface to a large number of points (over, say, 105), the 
normal equations fbr linear least-squares can become 
ill-conditioned and numerically unstable [17]. Because 
some regions in our tests could contain over a million 
points, we use only a relatively small (-104) random 
sample of the points in a region fbr parameterization 
and surface fitting. This adds to the numerical stability 
of the algorithm and decreases the processing time, yet 
makes no apparent difference in the results.

6. Con이usions and Future Work

We have presented a method fbr efficiently extracting 
surfaces from large point clouds with li비e user 
interaction. By taking advantage of the density of a 
point cloud, we can reliably find groups of points that 
can be approximated by sin이e surfaces. The extracted 
surfaces can easily be output in an industry-standard 
format for designers and modelers to create a final 
design. Furthermore, the region growing algorithm can 
be implemented in an interactive setting where the user 
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selects seed points for region growing. This would not 
require calculating the surface variation, of course.

We emphasize that the output of the algorithm is a 
disjoint set of surfaces to be 니sed in downstream 
applications. In future work, we hope to adapt the 
surface extraction approach presented in this paper to 
create a full reconstruction of the scanned object. In 
particular, we would like to blend and intersect the 
extracted surfaces by using an implicit partition of unity 
approach to create a piecewise-smooth reconstruction of 
the scanned object [26]. After surface extraction, we 
could subdivide the domain into, say, cubical cells and 
then 니se the labeling of the points in each cell to 
determine whether to 니se one extracted surface in the 
cell, join two or more extracted surfaces in the cell, or 
fit a new surface to the points in the cell. Then the 
approximations in each cell would be blended with an 
implicit partition of unity. This approach should also 
handle sharp edges and holes in the segmentation.
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