
International Journal of CAD/CAM Vol. 5, No. 1, pp. 19 〜27 (2005) International
Journal of
CAD/CAMGm

www.ijcc.아5

Surface Extraction from Point-Sampled Data through Region Growing

Migu이 Vieira and Kenji Shimada*

*Corresponding author:
Tel: +1-412-268-3614
Fax: +1-412-268-3348
E-mail: shimada@cmu.edu

Mechanical Engineering Department, Carnegie Mellon University

Abstract - As three-dimensional range scanners make large point clouds a more common initial representation of real world
objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting
smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses
principal component analysis to estimate the surface variation at each point After defining conditions for determining the
geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points
whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region
growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines
the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can
be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and
requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results
on large point clouds acquired from real-world objects.

Keywords: Point-sampled geometry, Surface reconstruction, Surface extraction, Segmentation, Region growing

1. Introduction

Point clouds are becoming an increasingly common
initial digital representation of real-world objects. This
is due to the popularity of affordable and accurate
scanning equipment that can quickly digitize the
geometry of a real-world object. However, the res니Iting
point cloud representing an objecfs surface can often
contain millions of three-dimensional points. This large
size and the noise associated with measurement can
make processing the data difficult. Nevertheless, there
are many applications where it is necessary to create a
computer model consisting of just a few simple surfaces
from the point-cloud data. Acc니rately reconstructing the
object^ geometry in this way is often a difficult and
time-consuming task. In this work, we present a method
for automatically extracting surfaces from point-이oud
data that works quickly and minimizes the memory
overhead of handling large data sets. Our surface
extraction technique segments the point cloud and has
the potential to be used in surface reconstruction,
reverse engineering, industrial design, and rapid
prototyping.

Surface extraction thro니gh region growing is founded
on the assumption of surface coherence [11,38]. This is
the observation that, despite the presence of noise,
almost every point sampled from an object's surface
will be geometrically related to its nearby points in that

they will all lie near a sin인e, smooth surface.
Furthermore, it implies that the connectivity information
of a triangle mesh can be replaced by spatial proximity
of the sampled points if the point cloud is sufficiently
dense. Our algorithm exploits this property to
automatically organize the point 이이id into distinct
regions approximated by simple surfaces.

Our method iterates between region growing and
surface fitting to automatically find sets of points that
can be closely approximated by single surfaces. Given
a set of N points X= sampled from a
surface in R3 and a seed point xh our algorithm
attempts to find a parametric surface b(z/,v) and a
maximal set of points Rb, such that every point in Rb is
geometrically compatible with b(z/,v). We define a
point to be geometrically compatible with a surface if
its position and normal differ from the nearby surface
by small amounts. In this presentation, we assume all
points have consistently oriented normals N = {n0,...,

If the normal data is not available, then it can be
calculated from a mesh representation, from the laser
scanner acq니isition process, or by estimating the tangent
plane of each point and then propagating normals along
a minimum spanning tree as described in [19].

The algorithm presented here, summarized in Algorithm
1, first partitions the bounding box of X into a cubical
grid for efficient nearest-neighbor searching. Then it
attempts to grow a region from each point xgX in
order of increasing surface variation o^(x), determined
by principal component analysis. Region growing first
checks if a small neighborhood, the seed region S(x),

around a point can be approximated with a single
surface 加湖(％u). If so, the compatible points in the

mailto:shimada@cmu.edu

20 International Journal of CAD/CAM Vol.5, No. I, pp. 19 - 27

(a) Surface variation (100,000 points)

Fig. 1. Different surface extraction steps for an automobile C-pillar.

(b) Points assigned to surfaces

EXTRACT-SURFACES(X)

Find x, y, z extents of X and partition domain into a cubical grid

for each xeX, calculate and store distance to k-nearest neighbors

for each x c X, calculate and store cr^(x)

for each x 6 X zn order of increasing surface variation

if LABELED(x), continue (skip to next point)

construct S(x) andfind

bgr(") =

CLEAR(Ry)

do

Rbq/d =

b0/j(w,v) = b„eH,(u,v)

REGION-GROWING] S(x), bnew(u, v), RbjWlv)

袖讹(队“시 >|R b,시)

Rb — Rb.o/d

b(旳 v) = b。汩

else

Rb = Rbsew

b(u,v)-bneiv(w,v)

create new region from Rb and b(사, v)

Algorithm 1. Pseudocode fbr the surface extraction algorithm.

seed region define a new region Rb,Mew and the algorithm
adds to this new region all nearby points geometrically
compatible with the surface. Once all compatible points
have been added, the algorithm fits a new surface
bwew(w,v) to the entire region and repeats the region
growing. A final surface b(w,v) is extracted when the
number of points in the region stops increasing. The
different steps of the algorithm are illustrated in Fig. 1.
Fig. 1(a) shows the point colored by surface variation,
Fig. 1(b) shows the points colored according to different
underlying surfaces, and Fig. 1(c) shows the extracted
surfaces painted with the same colors as the points they
represent. Note that in all of our examples the point
clouds appear continuous because they are dense
enough that there is more than one point per pixel.

Our region growing approach for surface extraction
is intuitive, efficient, and straightforward to implement.
By reducing the data representation to only what is
essential, we eliminate the need for a mesh data
structure and reduce the algorithmic complexity and
memory requirements fbr processing the data. This
allows users to process larger data sets, including not
just point clo니ds, b니t also parametric and polygonal
data, which one can easily convert into dense point
clouds. Our algorithm can extract parametric surfaces
from sets of millions of points in minutes with
guaranteed approximation errors. Furthermore, one can
speed up the surface extraction by simplifying the point
이o나d as in [29] without creating a mesh. Finally, the
region-growing algorithm can be easily adapted so that a
user can simply click on a point cloud to automatically
extract surfaces from it.

2. R이ated Work

Surface reconstruction from point clouds has
received considerable study and continues to do so.
There are several existing methods fbr generating a
piecewise-linear mesh from a point cloud [13, 19, 5, 6],
There are also methods fbr reconstructing a smooth or
piecewise-smooth surface from a point cloud [16, 7,
27, 26, 12, 20]. However, fbr our target applications,
creating an approximating mesh from the point clo니d is
umecessary. Furthermore, a fully automatic smooth or
piecewise-smooth surface reconstruction that results in
an implicit surface or a tiling of many triangular or
rectangular patches is difficult fbr a designer or modeler
to modify and cannot produce large surfaces of
acceptable quality for consumer product styling. More
recently, point clouds have also received attention as a
potential rendering primitive because of their compactness
and the increasing commonness of very large data sets
[23,31,34,4, 1,2,3].

Our region growing method is similar in principle to
existing methods fbr automatically partitioning meshes
into regions that can be easily parameterized. For example,
[24, 15] use an s-source adaptation of Dijkstia's shortest-

Miguel Vieira and Kenji shimmada Surface Extraction from Point-Sampled Data through Region Growing

path algorithm to segment a mesh. On point clouds,
[28] grows regions by enfbrcin흠 a normal cone condition,
requiring that the largest angle spanned by the point
normals in a region is below a certain threshold. The
present region growing method is more specific than
these, requiring that both the positions and the nonnals
of points are close to that of an underlying sui'face.

Our surface extraction algorithm can also be viewed
as a complement to existing algorithms for extracting
features from point clouds [18, 30], These papers apply
principal component analysis to a point cloud to detect
features then use a minimum spanning graph of the
feature points to extract sharp edges. Pauly, et al. [30]
further model the extracted edges with adaptive contoui*
models. In our approach, we use principal component
analysis to find the areas of smallest variation, then use
region growing to find clusters of points lying near
smooth surfaces. While feature extraction is most suitable
for mesh generation and non-photoi*ealistic rendering,
surface extraction is useful for reverse engineering,
surface reconstruction, and industrial design.

The concept of growing regions to find groups of
points that can be approximated by surfaces was
introduced for images by [11? 10] and adapted for
gridded height data in [36]. In [39, 38], the present
authors applied the region growing approach to segment
dense, unstructured meshes. In this paper, we further
extend the region growing approach into a method for
automatic surface extraction from point clouds. As
widespread use of modem measurement equipment
makes very large data sets more ubiquitous, operating
directly on the point cloud becomes more desirable. By
utilizing only the necessary data, the amount of
computer memory req나ifed for analysis becomes a
fraction of what is required for maintaining a mesh
data structure.

The work done by Huang and Menq and Benko and
Varady is most similar to ours. The method proposed
by Huang and Menq [21, 22] first constructs a mesh
from the point cloud, then segments it and fits B-spline
surfeces to the segments. However, the assumptions
and complexity of the approach make it unfeasible for
very large data sets. The method presented by Benko
and Varady [8, 9] is more closely related to ours. It

applies a hierarchy of tests to recursively subdivide a
point cloud into small regions that can be approximated
by a single analytic s니茂ice such as a plane, cylinder,
cone, sphere, or torus. However^ it is not clear that such
an approach can be used on point clouds representing
free-form surfeces.

3, Surface Extraction Algorithm

3.1. Seed point selection
Our algorithm begins with a single point, called a

seed point, for the extraction of each surface. A small
neighborhood around the seed point is then used to find
an initial surface approximation for region growing.
Intuitively then, region growing will be most effective
when the seed point is interior to a large group of
points lying near a single surface. We choose a simple,
fast heuristic method to select seed points, first estimating
the surface variation at each point in the point cloud,
then examining the points in order of increasing surface
variation. This makes the reasonable assumption that
region growing will be more successful in areas with
low variation than in areas with high variation. In
addition, as surfaces are extracted from the point cloud,
potential seed points can simply be skipped if they are
already assigned to regions.

The surface variation at each point is calculated using
principal component analysis, a technique commonly
used to estimate local surface properties of point clouds
[29, 18, 30]. It is illustrated in Fig. 2. The technique
can be understood as analogous to finding the mean
and variance of a one-dimensional distribution. Let
N(xz) be the ^-nearest neighbors of a point X/sX.
Denoting by x the centroid of N(x；), we can define the
3x3 covariance matrix C by

c= £ (y-x)-(y-x)" (1)

y e N(xf.)
This matrix is symmetric and positive 읂emi-deHnite
with real eigenvalues and corresponding
eigenvectors 잫加 v!5 v2 forming an orthogonal basis of
R3. The eigenvalues A； measure the variance of N(xz) in
the directions In particular, v0 estimates the surface
nomial of x； (up to sign) and the plane through x

(a) Input point cloud (200,000 points)

Fig. 2. The eflfects of varying neighborhood size on surfece variation estimation for a golf club head.

(b) Surface variation using few
nearest neighbors

(c) Surface variation using many
nearest neighbors

22 International Journal of CAD/CAM Vol.5, No. 1, pp. 19 27

spanned by Vj and v2 approximates the tangent plane at
x；[29, 19].

Therefore, 4)quantifies the deviation of N(x;) from
the tangent plane and we can define the scale-invariant
s니dhce variation of the /c-nearest neighbors as

z “0

지%尸爲侦" (2)

As shown in Fig. 2, this measure of variation
distinguishes clearly between curved and flat regions.

3고. Region growing

Region growing first finds a small set of points near
the seed point and approximates this neighborhood
with an initial surface. The region then grows by
clustering points that are geometrically compatible with
the approximating surface. Once all compatible points
have been added, the algorithm fits a new surface to the
region to improve the approximation. The algorithm
then uses this new surface to re-grow the region. This
process is repeated until the region size stops increasing.

As we progress through the point cloud, we attempt
to approximate the neighborhood of each point x； with
a surface. We first check if 阳 has been labeled as
belonging to a region. If so, we simply skip it. If not,
we construct a seed region S(xf) of all the 니出abeled
points within a radius ps of x；:

S(x)= (xgX| J x-x；I <ps and x is unlabeled}.

A seed re이on is illustrated in 2D in Fig. 3. If S(x;)

does not contain enough points for surface fitting, we
move on to the next seed point, leaving x; unlabeled.
Otherwise, we fit a surface to the seed region S(xz) as
described in Section 3.3. The radius ps should be
chosen to allow enough points for surface fitting but
not so many that it includes points that may correspond
to other surfoces, We discuss its selection in Section 4.

Each region formed by the algorithm is a set of
points geometrically compatible with the region's
underlying surface. We define geometric compatibility
in a G° and G1 sense. For a point x, a parametric surface
b(w,v), and parameters (w,v) that minimize the distance

Fig. 3. Seed region selection. The points in the seed region are
filled with gray. The initial surface is fit only to the points in the
seed region.

Fig. 4. Geometric compatibility. Only one point, filled with gray, is
geometrically compatible with the surface. The dotted curves
represent the G° compatibility threshold.

from x to b(w,v), we say the point is Gu compatible
with the surface if

|x-b(M,v)|<^0 (3)

and G1 compatible if

cos-l(n,nb)〈A (4)

where n is the point normal, nb is the surface normal at
(",V),

b„(M,v)xb„(M,v) (5)
% |b“(Q)xb，®,개

and d is in radians. All the different possible cases of
compatibility and non-compatibility are shown in Fig.
4. The dotted lines show the shortest paths to the
surface and thus imply the direction of the surface
normal nb at the position on the surfece nearest to each
point. When point normals deviate too much, the points
are incompatible with the surface. The compatibility
thresh이ds # and 4 are the only user-defined parameters.
They can be determined automatically as described in
[38], but to increase interactivity and to decrease
computation, we leave them _to the 니ser in this
presentation. The parameters (z/,v) of the point on the
surface closest to x are determined by first coarsely
sampling points on the surface and then using the
closest point to as x the initial value for a Newton
iteration that minimizes the distance from the surface
to x. A detailed description of this process is given in
[32].

Now that we have defined geometric compatibility,
we can present the algorithm for region growing. Given
a seed region S(xz) and a parametric surface b(w,v), the
first region growing step labels all the compatible
points in S(xz) and adds them to the region Rb. These
points are also inserted into a que니e Q used for region
growing. The algorithm dequeues points and checks
their Ar-nearest neighbors for any unlabeled points. If
any of these unlabeled points are compatible with
b(w,v), the algorithm inserts them into the queue. This
continues until the queue is empty. This can be written
in pseudocode as an Algorithm 2, where the function

Miguel Vieira and Kenji shimmada Surface Extraction from Point-Sampled Data through Region Growing 23

REGION-GROWING(S(xz), b(% v),Rb)

CLEAR(Rb)

CLEAR(g)

for each x g S(xz)

if x compatible with b(% v)

LABEL(x)

INSERT(Rb,x)

ENQUEUE(g,x)

GROW(Rb,g, b(w,v))

Algorithm 2. This function grows a region given a seed region and
an initial approximating surfoce.

GROW(Rb，0 b("))

while NOT-EMPTY(g)

x 스- DEQUEUED)

N(x) <- k-nearest neighbors of x

for each y e N(x)

if y unlabeled and compatible with

b(w,v)

LABEL(y)

INSERT(Rb,y)

ENQUEUE(Q,y)

Algorithm 3. The GROW function, called in Algorithm 2, uses a
queue and nearest-neighbor searching to grow the region.

GROW that grows each region can be written as in
Algorithm 3.

Once the region growing is complete, we fit a new
surfece to the points in Rb and repeat the region
growing process with S(x;) and the new surface. As
shown in Algorithm 1, we temporarily store the region
points and underlying surface for each iteration 니ntil
the region size does not increase from one iteration to
the next. In this case, we stop region growing and use
the larger of the current and previous regions and its
corresponding underlying surface. This iterative proced니re
maximizes the size of each region while improving the
quality of the approximating surface.

3.3. Surface fitting

The region growing framework is quite general and
can be used with a variety of surfaces. The algorithm
can be 니sed with any class of surfaces that allows
approximation (for surface fitting), differentiation, and
point projection (for testing geometric compatibility).
We implemented the region growing algorithm with
non-rational bicubic Bezier surfaces because they are
easy to manage yet representative of surfaces
commonly used in computer-aided design. They can be
expressed as

b(m) = ££p/("期(0，。京,uVl, (6)
片 Q/=0

where the B：(이) are the n虬degree Bernstein polynomials.
Given parameters (w,v) for each point in the region Rb,
we can write an overdetermined system of linear
equations that can be solved for the control points Pz7
니sing linear least squares [17,33]. However, determining
quality parameters for each point is often subtle [37, 25].

We adopt a fast and simple scheme for point
parameterization that has given good res니Its in all。니r
test cases. Given the points Rb in a region, we calculate
the plane perpendicular to a weighted average of the

point norm시s. We first find the centroid x of the
points in the region and the maximum squared distance
from any point to the centroid,

元ax = max'A지2. (7)

The plane normal is the Gaussian-weighted average of
the point normals in the region

ZgW冋

I x,.eRb^ '
w?=exp

l|x-x,-|2

2洁
(8)

where a is chosen s니ch that exp[-l/2((imax/1.
We then project the points in Rb onto the plane defined
by x and n and rotate them in-plane so that the area of
their axis-aligned bounding box is minimized. The in­
plane coordinates are then linearly scaled so that each
point in Rb is assigned parameters (w,v) such that
a<uy<\-a. The constant a is necessary because the
Bezier s니r您ces are only defined for a< w,v<l and the
region needs room to grow. In our implementation, we
use a= 0.25.

Once we have found parameters for each point, we
can perform surface fitting with linear least squares.
Although this initial surface approximation is often
adequate, we can improve the fit accuracy by projecting
the points back onto b(w,v) to find new parameters for
them. These new parameters can then be used to fit a
new surface to the region with linear least-squares. We
use three iterations of this in our implementation.

4. Results and Implementation

We implemented the algorithm as described in Section 3.
Our current program can take in mesh or point-normal
data and output control points for the parametric
surfaces approximating the data.

For principal component analysis and region growing,

24 International Journal of CAD/CAM Vol.5, No. 1, pp. 19 〜27

Table 1. Results with execution times and memory usage.

Model Num.
Points

Thresh.
Angle

Peak
RAM

Time
(secs)

C-pillar 99,790 5° 25 MB 24
Rear Fender 1,065,886 6° 90 MB 255
Front Door 1,497,459 5° 125 MB 288

we find the ^-nearest neighbors with k= 10. To make
the nearest neighbor searches faster, we precompute the
radius p, of the ball that contains the 10-nearest neighbors
of each point xz. This eliminates the need for sorting or
maintaining a priority q니e니e when making nearest
neighbor queries. For creating seed regions, we 니sc the
points in a ball of radi니s ps = 3p.

Table 1 shows the memory use and time for region
growing. We do not include the time required for
principal component analysis because it is a standard
analysis tool and takes only a few seconds for even the
largest models. A thresh이d distance of 0.3 mm was
used for all the examples, so it is also elided. In
practice, threshold distance can be easily determined
based on the laser-scanner tolerances. The threshold
angle is more application dependent. The algorithm
extracts surfaces from relativ이y small models in
seconds and takes j냐st minutes for the largest models.

Also, processing a point cloud takes considerably less
RAM than processing a mesh. Our implementation
approaches approximately 80 bytes per point for large
models. In our experience, this is less than 25% of the
RAM required to hold a mesh data str니ct니re with faces
and edges representing the same data. Our tests were
run on an AMD Athlon 64 2.2 GHz processor with 2
GB of RAM.

Fig. 5 shows point clouds on the left and extracted
surfaces on the right. The points in each region and
their underlying surface have the same color. Notice
that the algorithm can extract surfaces from large
regions, often with a sin이e surface representing hundreds
of tho니sands of points. For visualization clarity we
rendered the surfaces for 0.25 < uy <0.75. The surfaces
have otherwise not been trimmed to correspond to the
point-set geometry.

Fig. 6 demonstrates the quality of the extracted
surfaces by simulating reflection lines on the point
cloud. The Fig was created by using the point normals
to map a cylindrical light-strip texture onto the points.
For the res니Its, we projected labeled points onto the
surfaces and assigned them the corresponding surface
normals. Note that, in general, not all points were
assigned to regions. In the figs, only labeled points are
displayed.

(b) Front Door(1.5 million points)

Fig. 5. The point clouds colored by region labels and the extracted surfaces.

Miguel Vieira and Kenji shimmada Surface Extraction from Point-Sampled Data through Region Growing 25

(a) Reflection lines on C-pillar raw data (100,000 points) (b) Reflection lines on extracted surfaces

(c) Reflection lines on rear fender raw data (1,000,000 points)

Fig. 6. Simulated reflection lines on point cloud data before and after surface extraction.

(d) Reflection lines on extracted surfaces

5. Discussion

Our implementation processes point clouds in-core,
requiring the entire point cloud in main memory. The
most important requirement of the data structure for
processing the point cloud is fast and efficient nearest-
neighbors queries. For this, one can use hierarchical
space-partitioning data structures such as octrees [35]
or kd-trees [14], but finding nearest neighbors with
these is logarithmic in N. For a large point cloud,
region growing may make h니ndreds of millions of
nearest-neighbors queries, making logarithmic time
complexity unacceptable. Therefore, we exploit the fact
that our data is somewhat uniformly distributed and 니se
a simple cubical 3D grid data structure that allows
nearest-neighbor queries in constant time with modest
memory overhead. We first find the axis-aligned
bounding box of the input data and calculate its volume.
Then, we use the volume to partition it into K cubes
where K -N. This partitioning induces a hash on the
point coordinates, and each cube in the grid contains
pointers to the points it contains. If the radius that
contains the k-nearest neighbors is pre-computed, as in
our implementation, then the nearest neighbors may be
found with。니t sorting, making ^-nearest neighbors
queries an O(k) operation.

For each of the N points, we store the position and
normal information along with the region number and
the radius fbr nearest neighbor searching. The grid

requires approximately B(N 十K) bytes, where 5 = 4 on
32-bit architecture and 5 = 8 on 64-bit architecture and K
is the number of grid cubes. We note in passing that, if
there is sufficient memory, pointers to nearest neighbors
can be stored explicitly for each point, making nearest-
neighbor searching an (9(1) operation during region
growing. This can speed up the algorithm dramatically.

Also during region growing, when fitting a parametric
surface to a large number of points (over, say, 105), the
normal equations fbr linear least-squares can become
ill-conditioned and numerically unstable [17]. Because
some regions in our tests could contain over a million
points, we use only a relatively small (-104) random
sample of the points in a region fbr parameterization
and surface fitting. This adds to the numerical stability
of the algorithm and decreases the processing time, yet
makes no apparent difference in the results.

6. Con이usions and Future Work

We have presented a method fbr efficiently extracting
surfaces from large point clouds with li비e user
interaction. By taking advantage of the density of a
point cloud, we can reliably find groups of points that
can be approximated by sin이e surfaces. The extracted
surfaces can easily be output in an industry-standard
format for designers and modelers to create a final
design. Furthermore, the region growing algorithm can
be implemented in an interactive setting where the user

26 International Journal of CAD/CAM Vol.5, No. 1, pp. 19 ~ 27

selects seed points for region growing. This would not
require calculating the surface variation, of course.

We emphasize that the output of the algorithm is a
disjoint set of surfaces to be 니sed in downstream
applications. In future work, we hope to adapt the
surface extraction approach presented in this paper to
create a full reconstruction of the scanned object. In
particular, we would like to blend and intersect the
extracted surfaces by using an implicit partition of unity
approach to create a piecewise-smooth reconstruction of
the scanned object [26]. After surface extraction, we
could subdivide the domain into, say, cubical cells and
then 니se the labeling of the points in each cell to
determine whether to 니se one extracted surface in the
cell, join two or more extracted surfaces in the cell, or
fit a new surface to the points in the cell. Then the
approximations in each cell would be blended with an
implicit partition of unity. This approach should also
handle sharp edges and holes in the segmentation.

Acknowledgements

This work is based in part on work supported by an
NSF CAREER Award (No. 9985288). We would like
to thank Cyberware fbr the Golf Club data set 니sed in
our testing.

References

[1] A. Adamson and M. Alexa (2003), Ray Tracing Point Set
Surfaces, Proceedings of Shape Modeling International,
272-279.

[2] A. Adamson and M. Alexa (2003), Approximating and
Intersecting Surfaces from Points, Proceedings of
EUROGRAPHICS, 245-254.

[3] A. Adamson and M. Alexa (2004), Approximating Bounded,
Non-Orientable Surfaces from Points, Proceedings of Shape
Modeling International, 243-252.

[4] M. Alexa, J. Behr, D. Cohen-Or, S. Flei아iman, D. Levin,
and C. Silva (2001), Point Set Surfaces, IEEE Visualization,
21-28.

[5] N. Amenta, M. Bern and M. Kamvysselis (1998), A New
Vbronoi-Based Surface Reconstruction Algorithm, Proceeding
of SIGGRAPH. 415-422.

[6] M. Attene and M. Spagnuolo (2000), Automatic Surface
Reconstruction from Point Sets in Space, Proceedings of
EUROGRAPHICS, 457-465.

[7] C. Bajaj, F. Bernardini and G Xu (1995), Automatic
Reconstruction of Surfaces and Scalar Fields from 3D
Scans, Proceedings of SIGGRAPH, 109-118.

[8] P. Benko and T. Varady (2002), Direct Segmentation of
Smooth, Multiple Point Regions, Proceedings of Geometric
Modeling and Processing, 169-178.

[9] P. Benko and T. Varady (2004), Segmentation Methods
fbr smooth point regions of conventional engineering
objects, Computer-Aided Design, 36(6), 511-523.

[10] P. Besl (1988), Surfaces in Range Image Understanding,
Springer-Verlag.

[11] P. Besl and R. Jain (1988), Segmentation Through
\Sria비e-Order Surface Fitting, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 167-192.

[12] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W.
R. Fri마it, B. C. McCallum, and T. R. Evans (2001),
Reconstruction and Representation of 3D Objects with
Radial Basis Functions, Proceedings of SIGGPRAH, 67-
76.

[13] B. Curless and M. Levoy (1996), A Volumetric Method
fbr Building Complex Models from Range Image,
SIGGRAPH, 303-312.

[1 위 M. de Berg, M. van Krevald, M. Overmars, and O.
Schwarzkopf； Computational Geometry.

[15] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.
Lounsbeiy, and W. Stuetzle (1995), Multiresolution Analysis
of Arbitrary Meshes, Proceedings of SIGGRAPH, 173-182.

[16] M. Eck and H. Hoppe (1996), Automatic Reconstruction
of B-Spline Surface of Arbitrary Topological Type,
Proceedings of SIGGRAPH, 325-334.

[17] G Farin (2002), Curves and Surfaces for CAGD,
Academic Press, A Harcourt Science and Technology
Company.

[18] S. Gumhold, X. Wang, and R. MacLeod (2001), Feature
Extraction from Point Clouds, Proceedings of the 10th Int.
Meshing Roundtable.

[19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle (1992), Surface Reconstruction from Unorganized
Points, SIGGRAPH. 71-78.

[20] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin,
J. McDonald, J. Schweitzer, and W. Stuet기e (1994),
Piecewise Smooth Surfece Reconstruction, Proceedings
of SIGGRAPH, 295-302.

[21] J. Huang and C.-H. Menq (2001), Automatic Data
Segmentation for Geometric Feature Extraction from
Unorganized 3-D Coordinate Points, IEEE Transactions
on Robotics and Automation, 268-279.

[22] J. Huang and C.-H. Menq (2002), Automatic CAD Model
Reconstruction fi'om Multiple Point Clouds for Reverse
Engineering, Journal of Computing and Information
Science in Engineering, 160-170.

[23] M. Levoy and T. Whitted (1985), The Use of Points as a
Display Primitive, University of North Carolina at Chapel
Hill Tech. Rept., TR 85-022.

[24] B. Levy, S. Petitjean, N. Ray, and J. Maillot (2002), Least
Squares Conformal Maps for Automatic Texture Atlas
Generation, Proceedings of SIGGRAPH362-371.

[25] W. Ma and J. P. Kruth (1995), Parameterization of
randomly measured points fbr least squares fitting of B-
spline curves and surfaces, Computer-Aided Design, 27(9),
663-675.

[26] Y Ohtake, A. Belyaev, M. Alexa, G Turk and H.-P.
Seidel (2003), Multi-Level Partition of Unity Implicits,
Proceedings of SIGGRAPH, 463-470.

[27] Y. Ohtake, A. Belyaev and H.-P. Seidel (2004), 3D
Scattered Data Approximation with Adaptive Compactly
Supported Radial Basis Functions, Shape Modeling
International, 31-39.

[28] M. Pauly and M. Gross (2001), Spectral Processing of
Point-Sampled Geometry, Proceedings of SIGGRAPH,
379-386.

[29] M. Pauly, M. Gross and L. Kobbelt (2002), Effici이it
Simplification of Point-Sampled Geometry, IEEE
Visualization.

[3이 M. Pauly, R. Keiser and M. Gross (2003), Multi-scale
Feature Extraction on Point-Sampled Surfaces,
EUROGRAPHICS.

[31] H. Pfister, M. Zwicker, J. v. Baar and M. Gross (2000),
Surfels: Surface Elements as Rendering Primitives,

Miguel Vieira and Kenji shimmada Surface Extraction from Point-Sampled Data through Region Growing 27

Proceedings of SIGGRAPH, 335-342.
[32] L. Piegl and W. Tiller (1997), The NURBS Book,

Springer-Verlag.
[33] W. Press, S. Teukolsky, W. Vetterling and B. Flannery

(1997), Numerical Recipes in C, Second Edition, Cambridge
University Press.

[34] S. Rusinkiewicz and M. Levoy (2000), QSplat: A
Multiresolution Point Rendering System for Large
Meshes, Proceedings of SIGGRAPH, 343-352.

[35] H. Samet (1990), Applications of Spatial Data Structures,
Addison-Wesley.

[36] N. Sapidis and P. Besl (1995), Direct Construction of
Polynomial Surfaces from Dense Range Images through

Region Growing, ACM Transactions on Graphics^ 171-
200.

[37] B. Sarkar and C.-H. Menq (1991), Parameter Optimization
in Approximating Curves and Surfeces to Measurement
Data, Computer Aided Geometric Design, 267-290.

[38] M. Vieira and K. Shimada (2004), Surface Mesh
Segmentation and Smooth Surface Extraction Thro너gh
Region Growing, Computer Aided Geometric Design, (in
print).

[39] M. Vieira and K. Shimada (2004), Segmentation of Noisy
Laser-Scanner Generated Meshes with Piecewise Polynomial
Approximations, Proceedings of the ASME Design
Automation Conference.

Kenji Shimada is Professor in the Department of Mechanical
Engineering, Department of Biomedical Engineering (by
courtesy) and the Robotics Institute (by courtesy) at Carnegie
Mellon University. Dr. Shimada received his B.S. (1983) and
M.S. (1985) from the University of Tokyo, and his Ph.D.
(1993) from the Massa아uisetts Institute of Technology. His
research interests are in the areas of geometric modeling, mesh
processing, computational geometry, computer graphics, and
medical robotics. Prior to joining Carnegie Mellon in 1996, he
was Manager of Graphics Applications at IBM Research,
Tokyo Research Laboratory. Dr. Shimada received the ASME
Design Automation Best Paper Award in 2004, the IPSJ Best
Paper Award in 2002, NSF CAREER Award in 2000, IPSJ
Yamashita Award in 1994, and Nicograph Best Paper Award in
1994. He is a member of ACM, ASME, ASEE, IEEE, SAE,
and SIAM.

Miguel Vieira is doctoral student in Mechanical Engineering
at Carnegie Mellon University. He also earned his BS degree
from Carnegie Mellon University, where he was a Presidential
Scholar and graduated with University Honors. He won the
Best Paper Award at the 2004 American Society of Mechanical
Engineers Design Automation Conference for the paper
"Segmentation of Noisy Laser-Scanner Generated Meshes with
Piecewise Polynomial Approximations". His research interests
include surface reconstruction, computational geometry, and
computer graphics.

Kenji Shimada Miguel Vieira

