In the development of linear perspective, Brook Taylor's theory has achieved a special position. With his method described in Linear Perspective(1715) and New Principles of Linear Perspective(1719), the subject of linear perspective became a generalized and abstract theory rather than a practical method for painters. He is known to be the first who used the term 'vanishing point'. Although a similar concept has been used form the early stage of Renaissance linear perspective, he developed a new method of British perspective technique of measure points based on the concept of 'vanishing points'. In the 15th and 16th century linear perspective, pictorial space is considered as independent space detached from the outer world. Albertian method of linear perspective is to construct a pavement on the picture in accordance with the centric point where the centric ray of the visual pyramid strikes the picture plane. Comparison to this traditional method, Taylor established the concent of a vanishing point (and a vanishing line), namely, the point (and the line) where a line (and a plane) through the eye point parallel to the considered line (and the plane) meets the picture plane. In the traditional situation like in Albertian method, the picture plane was assumed to be vertical and the center of the picture usually corresponded with the vanishing point. On the other hand, Taylor emphasized the role of vanishing points, and as a result, his method entered the domain of projective geometry rather than Euclidean geometry. For Taylor's theory was highly abstract and difficult to apply for the practitioners, there appeared many perspective treatises based on his theory in England since 1740s. Joshua Kirby's Dr. Brook Taylor's Method of Perspective Made Easy, Both in Theory and Practice(1754) was one of the most popular treatises among these posterior writings. As a well-known painter of the 18th century English society and perspective professor of the St. Martin's Lane Academy, Kirby tried to bridge the gap between the practice of the artists and the mathematical theory of Taylor. Trying to ease the common readers into Taylor's method, Kirby somehow abbreviated and even omitted several crucial parts of Taylor's ideas, especially concerning to the inverse problems of perspective projection. Taylor's theory and Kirby's handbook reveal us that the development of linear perspective in European society entered a transitional phase in the 18th century. In the European tradition, linear perspective means a representational system to indicated the three-dimensional nature of space and the image of objects on the two-dimensional surface, using the central projection method. However, Taylor and following scholars converted linear perspective as a complete mathematical and abstract theory. Such a development was also due to concern and interest of contemporary artists toward new visions of infinite space and kaleidoscopic phenomena of visual perception.
The Journal of Korean Society for Radiation Therapy
/
v.11
no.1
/
pp.100-105
/
1999
Purpose : When the value of X,Y,Z coordination of the isocenter are reallocated from an arbitrary point using DRR (Digitally Reconstructed Radiographs) image in CT Simulation, conventional simulation is normally performed to verify the accuracy of this reallocation of the isocenter through the fluroscopy. The purpose of our experiment is to determine whether repeated test of the verification is necessary or not, and to analyze errors of reallocation with respect to the body region and the beam projection, if necessary, Material and Method : For 200 simulation patient, an arbitrary point is marked on each body and axial scaning is performed using CT, and treatment planing is done by drawing tumor and target volume on each slice. Using the planing data and the reallocated point of the isocenter, DRR image can be obtained and the final isocenter are marked on the patient's skin. In order to verify this reallocation of X,Y.Z coordination from CT simulation, We measure and evaluate the errors of these value on the fluoroscopy monitor and systematize them by classifying according to each body region (Brain, Neck and SCL, Lung, Esophagus, abdomen, Breast and Pelvis) and each beam projection {AP(PA), Supine, Prone and conformal : etc. } Conclusion : Isocenters are shifted by 3-5 mm in the case of Neck & SCL, Breast. at Abdomen, while noticeable differences are not found in other regions. Also, there are not correlations between the errors and the body regions or beam projections. However, our experiment intends to decide whether the procedure of verification is necessary on the vase of time and economy. It is regretful that we could not fully analyze the geometrical errors of DRR image and visual errors from the divergence. In conclusion, according to how much doctor consider tumor margin in drawing tumor and target volume, the meaning of analysis on the reallocation of isocenter should be reinterpreted, (which depends on the experience and capability of doctors)
Algorithm which can analyze the slope failure behavior utilizing the comprehensive information of the dense point of joint poles and the joint set orientations, both of which are obtained statistically, and the defect pattern of pole distribution has been developed. This method overcomes the potential incorrectness of the hemispheric projection method utilizing the joint set orientations only and also enhances the reliability of slope failure analysis. To this end a method capable of calculating the joint dispersion index directly from the joint pole distribution, instead of contour map, has been devised. The representative orientations for the slope failure analysis has been determined by considering the number and orientations of cone angle-dependent joint sets as well as the joint dispersion index. By engaging these representative orientations to the hemispheric projection analysis more reliable slope failure examination has been carried out. Sensitivity analysis for the potentially unstable slope of plane failure mode has been performed. Significance of joint strength index and the external seismic loading on the slope stability has been fully analyzed.
Kim, Ji-Eun;Mah, Su-Jung;Kim, Tae-Woo;Kim, Su-Jung;Park, Ki-Ho;Kang, Yoon-Goo
The korean journal of orthodontics
/
v.48
no.1
/
pp.11-22
/
2018
Objective: The aim of this study was to determine cephalometric factors that help predict favorable soft-tissue profile outcomes following treatment with the Class II Twin-block appliance. Methods: Pre- and post-treatment lateral cephalograms of 45 patients treated with the Class II Twin-block appliance were retrospectively analyzed. Profile silhouettes were drawn from the cephalograms and evaluated by three orthodontists in order to determine the extent of improvement. Samples were divided into a favorable group (upper 30% of visual analogue scale [VAS] scores, n = 14) and an unfavorable group (lower 30% of VAS scores, n = 14). Skeletal and soft-tissue measurements were performed on the cephalograms and an intergroup comparison was conducted. Results: An independent t-test revealed that the following pre-treatment values were lower in the favorable group compared to the unfavorable group: lower incisor to mandibular plane angle, lower incisor to pogonion distance, point A-nasion-point B angle, sella-nasion line (SN) to maxillary plane angle, SN to mandibular plane angle, gonial angle, and symphysis inclination. The favorable group had a larger incisor inclination to occlusal plane. Moreover, the favorable group showed larger post-treatment changes in gonial angle, B point projection, and pogonion projection than did the unfavorable group. Conclusions: Class II malocclusion patients with a low divergent skeletal pattern and reduced lower incisor protrusions are likely to show more improvement in soft-tissue profile outcomes following Class II Twin-block treatment.
The application of pontryagin's Maximum Principle to the optimal control eventually leads to the problem of solving the two point boundary value problem. Most of problems have been related to their own special factors, therfore it is very hard to recommend the best method of deriving their optimal solution among various methods, such as iterative Runge Kutta, analog computer, gradient method, finite difference and successive approximation by piece-wise linearization. The gradient method has been applied to the optimal control of two point boundary value problem in the power systems. The most important thing is to set up some objective function of which the initial value is the function of terminal point. The next procedure is to find out any global minimum value from the objective function which is approaching the zero by means of gradient projection. The algorithm required for this approach in the relevant differential equations by use of the Runge Kutta Method for the computation has been established. The usefulness of this approach is also verified by solving some examples in the paper.
Journal of the Korean Institute of Telematics and Electronics S
/
v.34S
no.2
/
pp.52-62
/
1997
To reconstruct the complete 3-D shape of an object, seveal range images form different viewpoints should be merged into a single model. The process of extraction of the transformation parameters between multiple range views is calle dregistration. In this paper, we propose a new algorithm to find the transformation parameters between multiple range views. Th eproposed algorithm consists of two step: initial estimation and iteratively update the transformation. To guess the initial transformation, we modify the principal axes by considering the projection effect, due to the difference fo viewpoints. Then, the following process is iterated: in order to extract the exact transformation parameters between the range views: For every point of the common region, find the nearest point among the neighborhood of the current corresponding point whose correspondency is defined by the reverse calibration of the range finder. Then, update the transformation to satisfy the new correspondencies. In order to evaluate the performance the proposed registration algorithm, some experiments are performed on real range data, acquired by space encoding range finder. The experimental results show that the proposed initial estimation accelerate the following iterative registration step.
The purpose of this article is to prove strong convergence theorems for weak relatively nonexpansive mapping which is firstly presented in this article. In order to get the strong convergence theorems for weak relatively nonexpansive mapping, the monotone CQ iteration method is presented and is used to approximate the fixed point of weak relatively nonexpansive mapping, therefore this article apply above results to prove the strong convergence theorems of zero point for maximal monotone operators in Banach spaces. Noting that, the CQ iteration method can be used for relatively nonexpansive mapping but it can not be used for weak relatively nonexpansive mapping. However, the monotone CQ method can be used for weak relatively nonexpansive mapping. The results of this paper modify and improve the results of S.Matsushita and W.Takahashi, and some others.
The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616?5628] and some other papers.
The point $P{\in}{\mathbb{P}}^2$ is referred to as a Galois point for a nonsingular plane algebraic curve C if the projection ${\pi}_P:C{\rightarrow}{\mathbb{P}}^1$ from P is a Galois covering. In contrast, the point $P^{\prime}{\in}C^{\prime}$ is referred to as a weak Galois Weierstrass point of a nonsingular algebraic curve C' if P' is a Weierstrass point of C' and a total ramification point of some Galois covering $f:C^{\prime}{\rightarrow}{\mathbb{P}}^1$. In this paper, we discuss the following phenomena. For a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$, if there exists a common ramification point of ${\pi}_P$ and ${\varphi}$, then there exists a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with its Weierstrass semigroup such that H(P') = or , which is a semigroup generated by two positive integers r and 2r + 1 or 2r - 1, such that P' is a branch point of ${\varphi}$. Conversely, for a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with H(P') = or , there exists a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$ such that P' is a branch point of ${\varphi}$.
Journal of the Institute of Convergence Signal Processing
/
v.8
no.3
/
pp.156-162
/
2007
The parallel beam SPECT system acquires projection data by using collimators in conjunction with photon detectors. The projection data of the parallel beam SPECT system is, however, blurred by the point response function of the collimator that is used to define the range of directions where photons can be detected. By increasing the number of parallel holes per unit area in collimator, one can reduce such blurring effect. This approach also, however, has the blurring problem if the distance between the object and the collimator becomes large. In this paper we consider correction methods for artifacts caused by non-circular orbit of parallel beam SPECT with many parallel holes per detector cell. To do so, we model the relationship between the object and its projection data as a linear system, and propose an iterative reconstruction method including artifacts correction. We compute the projector and the backprojector, which are required in iterative method, as a sum of convolutions with distance-dependent point response functions instead of matrix form, where those functions are analytically computed from a single function. By doing so, we dramatically reduce the computation time and memory required for the generation of the projector and the backprojector. We conducted several simulation studies to compare the performance of the proposed method with that of conventional Fourier method. The result shows that the proposed method outperforms Fourier methods objectively and subjectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.