• 제목/요약/키워드: Point Number Algorithm

검색결과 609건 처리시간 0.027초

가변 시간 K차 뉴톤-랍손 부동소수점 나눗셈 (A Variable Latency K'th Order Newton-Raphson's Floating Point Number Divider)

  • 조경연
    • 대한임베디드공학회논문지
    • /
    • 제9권5호
    • /
    • pp.285-292
    • /
    • 2014
  • The commonly used Newton-Raphson's floating-point number divider algorithm performs two multiplications in one iteration. In this paper, a tentative K'th Newton-Raphson's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number divider unit. Also, it can be used to construct optimized approximate reciprocal tables.

32 비트 곱셈기를 사용한 골드스미트 배정도실수 역수 계산기 (Goldschmidt's Double Precision Floating Point Reciprocal Computation using 32 bit multiplier)

  • 조경연
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3093-3099
    • /
    • 2014
  • 최근 그래픽 프로세서, 멀티미디어 프로세서, 음성처리 프로세서 등에서 부동소수점이 주로 사용된다. 한편 C, Java 등 고급언어에서는 단정도실수와 배정도실수를 사용하고 있다. 본 논문에서는 32비트 곱셈기를 사용하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 배정도실수 가수를 상위 부분과 하위 부분으로 나누고, 상위 부분의 역수를 골드스미스 알고리즘으로 계산하고, 이를 초기값으로 하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 제안한 알고리즘은 입력값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블에서 평균곱셈 횟수를 계산한다.

32 비트 곱셈기를 사용한 뉴톤-랍손 배정도실수 역수 계산기 (Newton-Raphson's Double Precision Reciprocal Using 32 bit multiplier)

  • 조경연
    • 한국산업정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.31-37
    • /
    • 2013
  • 최근 그래픽 프로세서, 멀티미디어 프로세서, 음성처리 프로세서 등에서 부동소수점이 주로 사용된다. C, Java 등 고급언어에서는 단정도실수와 배정도실수를 사용하고 있다. 본 논문에서는 32 비트 곱셈기를 사용하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 배정도 실수 가수를 상위 부분과 하위 부분으로 나누고, 상위 부분의 역수를 뉴턴-랍손 알고리즘으로 계산한다. 그리고 이를 초기값으로 하여 배정도실수의 역수를 계산한다. 제안한 알고리즘은 입력값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블에서 평균 곱셈 횟수를 계산한다.

부동소수점수 N차 제곱근 K차 골드스미스 알고리즘 (Floating Point Number N'th Root K'th Order Goldschmidt Algorithm)

  • 조경연
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1029-1035
    • /
    • 2019
  • In this paper, a tentative Kth order Goldschmidt floating point number Nth root algorithm for K order convergence rate in one iteration is proposed by applying Taylor series to the Goldschmidt square root algorithm. Using the proposed algorithm, Nth root and Nth inverse root can be computed from iterative multiplications without division. It also predicts the error of the algorithm iteration. It iterates until the predicted error becomes smaller than the specified value. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number Nth root unit.

K차 뉴톤-랍손 부동소수점수 N차 제곱근 (Kth order Newton-Raphson's Floating Point Number Nth Root)

  • 조경연
    • 대한임베디드공학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-51
    • /
    • 2018
  • In this paper, a tentative Kth order Newton-Raphson's floating point number Nth root algorithm for K order convergence rate in one iteration is proposed by applying Taylor series to the Newton-Raphson root algorithm. Using the proposed algorithm, $F^{-1/N}$ and $F^{-(N-1)/N}$ can be computed from iterative multiplications without division. It also predicts the error of the algorithm iteration and iterates only until the predicted error becomes smaller than the specified value. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number Nth root unit.

로봇의 위치계산을 위한 포인트 개수 알고리즘 (Point Number Algorithm for Position Identification of Mobile Robots)

  • 유강;손영익;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.427-429
    • /
    • 2005
  • This paper presents the use of Point Number Algorithm (PNA) for real-time image processing for position identification of mobile robot. PNA can get how many points in the image gotten from the robot vision and can calculate the distance between the robot and the wall by the number of the points. The algorithm can be applied to a robot vision system enable to identify where it is in the workspace. In the workspace, the walls are made up by white background with many black points on them evenly. The angle of the vision is set invariable. So the more black points in the vision, the longer the distance is from the robot to the wall. But when the robot does not face the wall directly, the number of the black points is different. When the robot faces the wall, the least number of the black points can be gotten. The simulation results are presented at the end of this paper.

  • PDF

공차를 고려한 다각형 영역의 내외부 판별 알고리즘 (Tolerance-based Point Classification Algorithm for a Polygonal Region)

  • 정연찬;박준철
    • 한국CDE학회논문집
    • /
    • 제7권2호
    • /
    • pp.75-80
    • /
    • 2002
  • This paper details a robust and efficient algorithm for point classification with respect to a polygon in 2D real number domain. The concept of tolerance makes this algorithm robust and consistent. It enables to define‘on-boundary’ , which can be interpreted as either‘in-’or‘out-’side region, and to manage rounding errors in floating point computation. Also the tolerance is used as a measure of reliability of point classifications. The proposed algorithm is based on a ray-intersection technique known as the most efficient, in which intersections between a ray originating from a given test point and the boundary of a region are counted. An odd number of intersections indicates that the point is inside region. For practical examples the algorithm is most efficient because most edges of the polygon region are processed by simple bit operations.

Flow Shop 형태를 갖는 FMS에서의 AGV투입시점과 필요댓수의 결정 (Determination of the Entering Point and the Number of AGVs required in the Flow Shop Type FMS)

  • 양대용;정병희;이종민
    • 대한산업공학회지
    • /
    • 제17권1호
    • /
    • pp.109-115
    • /
    • 1991
  • In automated manufacturing systems, Automated Guided Vehicle(AGV) Systems are increasingly important in material handling and manufacturing operations. A considerably flexible AGV system needs to be operated with maximum effectiveness. This paper develops an algorithm for the determination of the entering point and the number of AGVs required in the Flow Shop Type FMS. We consider an AGV used as a carrier and mobile workstation. For the limited number of AGV, the entering point of an AGV on a simple loop is determined in order to maximize the utilization of AGVs. For the unlimited number of AGVs, the number of AGVs required in the FMS is determined on the basis of the entering point of AGVs. The result by the algorithm may be used as a criterion on the control of material flow and the assignment of AGVs in the FMS. A numerical example is given to illustrate the algorithm.

  • PDF

곱셈기를 이용한 정확한 부동소수점 제곱근 계산기 (An exact floating point square root calculator using multiplier)

  • 조경연
    • 한국정보통신학회논문지
    • /
    • 제13권8호
    • /
    • pp.1593-1600
    • /
    • 2009
  • 부동소수점 제곱근 연산은 곱셈을 반복하여 근사값을 계산하는 뉴턴-랍손 알고리즘 및 골드스미트 알고리즘과 뺄셈을 반복하여 정확한 간을 계산하는 SRT 알고리즘이 있다. 본 논문에서는 곱셈기를 사용하여 정확한 값을 계산하는 제곱근 알고리즘을 제안한다. 본 논문에서는 뉴턴-랍손 알고리즘을 이용하여 근사 역제곱근을 구하고, 이의 오차를 줄이면서 제곱근을 구하는 알고리즘과 계산된 제곱근을 보정하는 알고리즘을 제안한다. 제안한 알고리즘은 단정도 실수에서는 전수 조사를 통해서, 배정도 실수에서는 10억 개의 무작위 수를 계산하여 모두 정확한 값을 얻었다. 본 논문에서 제안한 알고리즘은 곱셈기만을 사용하므로 별도의 하드웨어가 필요하지 않다. 따라서 실장제어용기기, 휴대용기기 등 정확한 제곱근 연산을 요구하는 분야에서 사용될 수 있다.

Point-kernel 방법론 기반 임의 형태 방사선원에 대한 외부피폭 방사선량 평가 알고리즘 개발 (Development of Radiation Dose Assessment Algorithm for Arbitrary Geometry Radiation Source Based on Point-kernel Method)

  • 김주영;김민성;김지우;김광표
    • 방사선산업학회지
    • /
    • 제17권3호
    • /
    • pp.275-282
    • /
    • 2023
  • Workers in nuclear power plants are likely to be exposed to radiation from various geometrical sources. In order to evaluate the exposure level, the point-kernel method can be utilized. In order to perform a dose assessment based on this method, the radiation source should be divided into point sources, and the number of divisions should be set by the evaluator. However, for the general public, there may be difficulties in selecting the appropriate number of divisions and performing an evaluation. Therefore, the purpose of this study is to develop an algorithm for dose assessment for arbitrary shaped sources based on the point-kernel method. For this purpose, the point-kernel method was analyzed and the main factors for the dose assessment were selected. Subsequently, based on the analyzed methodology, a dose assessment algorithm for arbitrary shaped sources was developed. Lastly, the developed algorithm was verified using Microshield. The dose assessment procedure of the developed algorithm consisted of 1) boundary space setting step, 2) source grid division step, 3) the set of point sources generation step, and 4) dose assessment step. In the boundary space setting step, the boundaries of the space occupied by the sources are set. In the grid division step, the boundary space is divided into several grids. In the set of point sources generation step, the coordinates of the point sources are set by considering the proportion of sources occupying each grid. Finally, in the dose assessment step, the results of the dose assessments for each point source are summed up to derive the dose rate. In order to verify the developed algorithm, the exposure scenario was established based on the standard exposure scenario presented by the American National Standards Institute. The results of the evaluation with the developed algorithm and Microshield were compare. The results of the evaluation with the developed algorithm showed a range of 1.99×10-1~9.74×10-1 μSv hr-1, depending on the distance and the error between the results of the developed algorithm and Microshield was about 0.48~6.93%. The error was attributed to the difference in the number of point sources and point source distribution between the developed algorithm and the Microshield. The results of this study can be utilized for external exposure radiation dose assessments based on the point-kernel method.