• Title/Summary/Keyword: Point Features

Search Result 1,439, Processing Time 0.023 seconds

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF

The Association between Facial Morphology and Cold Pattern

  • Ahn, Ilkoo;Bae, Kwang-Ho;Jin, Hee-Jeong;Lee, Siwoo
    • The Journal of Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.102-119
    • /
    • 2021
  • Objectives: Facial diagnosis is an important part of clinical diagnosis in traditional East Asian Medicine. In this paper, using a fully automated facial shape analysis system, we show that facial morphological features are associated with cold pattern. Methods: The facial morphological features calculated from 68 facial landmarks included the angles, areas, and distances between the landmark points of each part of the face. Cold pattern severity was determined using a questionnaire and the cold pattern scores (CPS) were used for analysis. The association between facial features and CPS was calculated using Pearson's correlation coefficient and partial correlation coefficients. Results: The upper chin width and the lower chin width were negatively associated with CPS. The distance from the center point to the middle jaw and the distance from the center point to the lower jaw were negatively associated with CPS. The angle of the face outline near the ear and the angle of the chin line were positively associated with CPS. The area of the upper part of the face and the area of the face except the sensory organs were negatively associated with CPS. The number of facial morphological features that exhibited a statistically significant correlation with CPS was 37 (unadjusted). Conclusions: In this study of a Korean population, subjects with a high CPS had a more pointed chin, longer face, more angular jaw, higher eyes, and more upward corners of the mouth, and their facial sensory organs were relatively widespread.

Spherical Signature Description of 3D Point Cloud and Environmental Feature Learning based on Deep Belief Nets for Urban Structure Classification (도시 구조물 분류를 위한 3차원 점 군의 구형 특징 표현과 심층 신뢰 신경망 기반의 환경 형상 학습)

  • Lee, Sejin;Kim, Donghyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.115-126
    • /
    • 2016
  • This paper suggests the method of the spherical signature description of 3D point clouds taken from the laser range scanner on the ground vehicle. Based on the spherical signature description of each point, the extractor of significant environmental features is learned by the Deep Belief Nets for the urban structure classification. Arbitrary point among the 3D point cloud can represents its signature in its sky surface by using several neighborhood points. The unit spherical surface centered on that point can be considered to accumulate the evidence of each angular tessellation. According to a kind of point area such as wall, ground, tree, car, and so on, the results of spherical signature description look so different each other. These data can be applied into the Deep Belief Nets, which is one of the Deep Neural Networks, for learning the environmental feature extractor. With this learned feature extractor, 3D points can be classified due to its urban structures well. Experimental results prove that the proposed method based on the spherical signature description and the Deep Belief Nets is suitable for the mobile robots in terms of the classification accuracy.

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

Detection of Multiple Salient Objects by Categorizing Regional Features

  • Oh, Kang-Han;Kim, Soo-Hyung;Kim, Young-Chul;Lee, Yu-Ra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.272-287
    • /
    • 2016
  • Recently, various and effective contrast based salient object detection models to focus on a single target have been proposed. However, there is a lack of research on detection of multiple objects, and also it is a more challenging task than single target process. In the multiple target problem, we are confronted by new difficulties caused by distinct difference between properties of objects. The characteristic of existing models depending on the global maximum distribution of data point would become a drawback for detection of multiple objects. In this paper, by analyzing limitations of the existing methods, we have devised three main processes to detect multiple salient objects. In the first stage, regional features are extracted from over-segmented regions. In the second stage, the regional features are categorized into homogeneous cluster using the mean-shift algorithm with the kernel function having various sizes. In the final stage, we compute saliency scores of the categorized regions using only spatial features without the contrast features, and then all scores are integrated for the final salient regions. In the experimental results, the scheme achieved superior detection accuracy for the SED2 and MSRA-ASD benchmarks with both a higher precision and better recall than state-of-the-art approaches. Especially, given multiple objects having different properties, our model significantly outperforms all existing models.

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Aerial Triangulation with 3D Linear Features and Arc-Length Parameterization

  • Lee, Won-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.115-120
    • /
    • 2009
  • Point-based methods with experienced human operators are processed well in traditional photogrammetric activities but not the autonomous environment of digital photogrammetry. To develop more robust and accurate techniques, higher level objects of straight linear features accommodating element other than points are adopted instead of points in aerial triangulation. Even though recent advanced algorithms provide accurate and reliable linear feature extraction, extracting linear features is more difficult than extracting a discrete set of points which can consist of any form of curves. Control points which are the initial input data and break points which are end points of piecewise curves are easily obtained with manual digitizing, edge operators or interest operators. Employing high level features increase the feasibility of geometric information and provide the analytical and suitable solution for the advanced computer technology.

  • PDF

Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas

  • Mezaal, Mustafa Ridha;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.45-74
    • /
    • 2018
  • Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.

On the Use of Finite Rotation Angles for Spacecraft Attitude Control

  • Kim, Chang Joo;Hur, Sung Wook;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.300-314
    • /
    • 2017
  • This paper examines finite rotation angle (FRA) applications for spacecraft attitude control. The coordinate transformation matrix and the attitude kinematics represented by FRAs are introduced. The interpolation techniques for the angular orientations are thoroughly investigated using the FRAs and the results are compared to those using traditional methods. The paper proposes trajectory description techniques by using extremely smooth polynomial functions of time, which can describe point-to-point attitude maneuvers in a realizable and accurate manner with the help of unique FRA features. In addition, new controller design techniques using the FRAs are developed by combining the proposed interpolation techniques with a model predictive control framework. The proposed techniques are validated through their attitude control applications for an aggressive point-to-point maneuver. Conclusively, the FRAs provide much more flexibility than quaternions and Euler angles when describing kinematics, generating trajectories, and designing attitude controllers for spacecraft.

PID control with parameter scheduling using fuzzy logic

  • Kwak, Jae-Hyuck;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • This paper describes new PID control methods based on the fuzzy logic. PID gains are retuned after evaluating control performances of transient responses in terms of performance features. The retuning procedure is based on fuzzy rules and reasoning accumulated from the knowledge of experts on PID gain scheduling. For the case that the retuned PID gains result in worse CLDR (characteristics of load disturbance rejection) than the initial gains, an on-line tuning scheme of the set-point weighting parameter is, proposed. This is based on the fact that the set-point weighting method efficiently reduce either overshoot or undershoot without any degradation of CLDR. The set-point weighting parameter is adjusted at each sampling instant by the fuzzy rules and reasoning. As a result, better control performances were achived in comparison with die controllers tuned by the Z-N (Ziegler-Nichols) parameter tuning formula or by the fixed set-point weighting parameter.

  • PDF