Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.1.4

Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas  

Mezaal, Mustafa Ridha (Department of Civil Engineering, University Putra Malaysia)
Pradhan, Biswajeet (School of Systems, Management and Leadership, Faculty of Engineering and Information Technology, University of Technology Sydney)
Publication Information
Korean Journal of Remote Sensing / v.34, no.1, 2018 , pp. 45-74 More about this Journal
Abstract
Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.
Keywords
Data Mining; Landslide Detection; LiDAR; Orthophotos; GIS; Remote Sensing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yu, W., B. Wu, T. Huang, X. Li, K. Williams, and H. Zhao, 2006. Statistical methods in proteomics, In Springer Handbook of Engineering Statistics, pp. 623-638, Springer-Verlag, London.
2 Zhang, Y., T. Maxwell, H. Tong, and V. Dey, 2010. Development of a supervised software tool for automated determination of optimal segmentation parameters for ecognition, pp. 5-7, na.
3 Zhen, Z., L.J. Quackenbush, S.V. Stehman, and L. Zhang, 2013. Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification, International Journal of Remote Sensing, 34(19): 6914-6930.   DOI
4 Lu, G. Y. and D. W. Wong, 2008. An adaptive inversedistance weighting spatial interpolation technique, Computers and Geosciences, 34(9): 1044-1055.   DOI
5 Lu, P., A. Stumpf, N. Kerle, and N. Casagli, 2011. Object-oriented change detection for landslide rapid mapping, IEEE Geoscience and Remote Sensing Letters, 8(4): 701-705.   DOI
6 Ma, H.R., X. Cheng, L. Chen, H. Zhang, and H. Xiong, 2016. Automatic identification of shallow landslides based on Worldview2 remote sensing images, Journal of Applied Remote Sensing, 10(1): 016008-016008.   DOI
7 Malamud, B.D., D.L. Turcotte, F. Guzzetti, and P. Reichenbach, 2004. Landslide inventories and their statistical properties, Earth Surface Processes and Landforms, 29(6): 687-711.   DOI
8 Martha, T.R., N. Kerle, C.J. Van Westen, V. Jetten, and K.V. Kumar, 2011. Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis, IEEE Transactions on Geoscience and Remote Sensing, 49(12): 4928-4943.   DOI
9 Dadaneh, B.Z., H. Y. Markid, and A. Zakerolhosseini, 2016. Unsupervised probabilistic feature selection using ant colony optimization, Expert Systems with Applications, 53: 27-42.   DOI
10 Grimm, R., T. Behrens, M. Marker, and H. Elsenbeer, 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island digital soil mapping using Random Forests analysis, Geoderma, 146(1-2): 102-113.   DOI
11 Danneels, G., E. Pirard, and H.B. Havenith, 2007. Automatic landslide detection from remote sensing images using supervised classification methods, Proc. of 2007 IEEE International Geoscience & Remote Sensing Symposium, Barcelona, Jul.23-28, pp. 3014-3017.
12 Mezaal, M. R., B. Pradhan, H. Z. M. Shafri, and Z. M. Yusoff, 2017b. Automatic landslide detection using Dempster-Shafer theory from LiDARderived data and orthophotos, Geomatics, Natural Hazards and Risk, 1-20.
13 McKean, J. and J. Roering, 2004. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry, Geomorphology, 57(3): 331-351.   DOI
14 Meyer, D., E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch, 2014. e1071: Misc Functions of the Department of Statistics (e1071), R Package Version 1.6-4, TU Wien, Vienna.
15 Mezaal, M.R., B. Pradhan, M.I. Sameen, H.Z. Shafri, and Z.M. Yusoff, 2017a. Optimized Neural Architecture for Automatic Landslide Detection from High Resolution Airborne Laser Scanning Data, Applied Sciences, 7(7): 730.   DOI
16 Dorigo, M. and T. Stutzle, 2010. Ant colony optimization: overview and recent advances, In Handbook of metaheuristics, pp. 227-263, Springer, US.
17 De Blasio, F.V., 2011. Landslides in Valles Marineris (Mars): a possible role of basal lubrication by sub-surface ice, Planetary and Space Science, 59(13): 1384 1392.   DOI
18 Definiens, A.G., 2007. Definiens developer 7 reference book, Definiens AG, Munchen, pp. 21-24.
19 R Development Core Team, 2010. R: A language and environment for statistical computing, R Foundation for Statistical Computing Vienna, Austria, ISBN 3-900051-07-0, URL: http://www.R-project.org.
20 Dou, J., K.-T. Chang, S. Chen, A.P. Yunus, J.K. Liu, H. Xia, and Z. Zhu, 2015. Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm, Remote Sensing, 7(4): 4318-4342.   DOI
21 Dragut, L. and T. Blaschke, 2006. Automated classification of landform elements using object-based image analysis, Geomorphology, 81(3): 330-344.   DOI
22 Dragut, L., D. Tiede, and S.R. Levick, 2010. A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data, International Journal of Geographical Information Science, 24(6): 859-871.   DOI
23 Nyland, R. D., 2016. Silviculture: concepts and applications, Waveland Press, Long Grove, IL, USA.
24 Miller, P.E., J.P. Mills, S.L. Barr, S.J. Birkinshaw, A. J. Hardy, G. Parkin, and S.J. Hall, 2012. A remote sensing approach for landslide hazard assessment on engineered slopes, IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1048-1056.   DOI
25 Miner, A.S., P. Flentje, C. Mazengarb, and D.J. Windle, 2010. Landslide Recognition using LiDAR derived Digital Elevation Models-Lessons learnt from selected Australian examples.
26 Moine, M., A. Puissant, and J.P. Malet, 2009. Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonnette basin (Alpes-de-Hautes-Provence, France), In Landslide processes-from geomorphologic mapping to dynamic modelling, pp. 63-68.
27 Mutanga, O., E. Adam, and M.A. Cho, 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm, International Journal of Applied Earth Observation and Geoinformation, 18: 399-406.   DOI
28 Nichol, J. E., A. Shaker, and M. S. Wong, 2006. Application of high-resolution stereo satellite images to detailed landslide hazard assessment, Geomorphology, 76(1): 68-75.   DOI
29 Olaya, V., 2009. Basic land-surface parameters, Developments in Soil Science, 33: 141-169.   DOI
30 Pal, M. and G. M. Foody, 2010. Feature selection for classification of hyperspectral data by SVM, IEEE Transactions on Geoscience and Remote Sensing, 48(5): 2297-2307.   DOI
31 Pal, M., P.M. Mather, 2003. An assessment of the effectiveness of decision tree methods for land cover classification, Remote Sensing of Environment, 86(4): 554-565.   DOI
32 Foody, G. M. and A. Mathur, 2006. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM, Remote Sensing of Environment, 103(2): 179-189.   DOI
33 Parpinelli, R. S., H. S. Lopes, and A. A. Freitas, 2002. Data mining with an ant colony optimization algorithm, IEEE Transactions on Evolutionary Computation, 6(4): 321-332.   DOI
34 Duro, D.C., S.E. Franklin, and M.G. Dube, 2012. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests, International Journal of Remote Sensing, 33(14): 4502-4526.   DOI
35 Fassnacht, F.E., F. Hartig, H. Latifi, C. Berger, J. Hernandez, P. Corvalan, and B. Koch, 2014. Importance of sample size: data type and prediction method for remote sensing-based estimations of aboveground forest biomass, Remote Sensing of Eenviroment, 154: 102-114.   DOI
36 Fei, L.Y. and Y.L. Lee, 2009. The rapid method to identify landslide areas and disasters triggered by Typhoon Morakot, Sino-Geotechnics, 122: 61-68.
37 Fiorucci, F., M. Cardinali, R. Carla, M. Rossi, A. Mondini, L. Santurri, and F. Guzzetti, 2011. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images, Geomorphology, 129(1): 59-70.   DOI
38 Galli, M., F. Ardizzone, M. Cardinali, F. Guzzetti, and P. Reichenbach, 2008. Comparing landslide inventory maps, Geomorphology, 94(3): 268-289.   DOI
39 Gao, Y. and J. F. Mas, 2008. A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions, Online Journal of Earth Sciences, 2(1): 27-35.
40 Pawluszek, K. and A. Borkowski, 2016. Landslides identification using airborne laser scanning data derived topographic terrain attributes and support vector machine classification, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress, Prague, Czech Republic, Jul. 12-19, vol. XLI-B8.
41 Pedergnana, M., P. R. Marpu, M. Dalla Mura, J. A. Benediktsson, and L. Bruzzone, 2013. A novel technique for optimal feature selection in attribute profiles based on genetic algorithms, IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3514-3528.   DOI
42 Pourghasemi, H.R., H.R. Moradi, S.F. Aghda, C. Gokceoglu, and B. Pradhan, 2014. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multicriteria evaluation models (North of Tehran, Iran), Arabian Journal of Geosciences, 7(5): 1857-1878.   DOI
43 Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Computers and Geosciences, 51: 350-365.   DOI
44 Pradhan, B., M.N. Jebur, H.Z.M. Shafri, and M.S. Tehrany, 2016. Data Fusion Technique Using Wavelet Transform and Taguchi Methods for Automatic Landslide Detection From Airborne Laser Scanning Data and QuickBird Satellite Imagery, IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1610-1622.   DOI
45 Pradhan, B. and S. Lee, 2010. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia, Landslides, 7(1): 13-30.   DOI
46 Pradhan, B. and M.R. Mezaal, 2017. Optimized Rule Sets for Automatic Landslide Characteristic Detection in a Highly Vegetated Forests, In Laser Scanning Applications in Landslide Assessment, pp. 51-68, Springer International Publishing AG, Cham, Switzerland.
47 Aladesote, I., A. Olutola, and O. Olayemi, 2016. Feature or Feature Extraction for Intrusion Detection System using Gain Ratio and Principal Component Analysis (PCA), Methodology, 4(3).
48 Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Boston, MA, USA.
49 Guzzetti, F., A. C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, and K.-T. Chang, 2012. Landslide inventory maps: New tools for an old problem, Earth-Science Reviews, 112(1): 42-66.   DOI
50 Alwan, H. B. and K. R. Ku-Mahamud, 2012. Optimizing support vector machine parameters using continuous ant colony optimization, 2012 7th International Conference on Computing and Convergence Technology (ICCCT), Dec. 3-5, Seoul, South Korea, pp. 164-169.
51 Heleno, S., M. Matias, P. Pina, and A. J. Sousa, 2016. Semiautomated object-based classification of rain-induced landslides with VHR multispectral images on Madeira Island, Natural Hazards and Earth System Sciences, 16: 1035-1048.   DOI
52 Guzzetti, F., P. Reichenbach, M. Csardinali, M. Galli, and F. Ardizzone, 2005. Probabilistic landslide hazard assessment at the basin scale, Geomorphology, 72 (1): 272-299.   DOI
53 Han, J., J. Pei, and M. Kamber, 2011. Data Mining: Concepts and Techniques, Elsevier, Amsterdam, Netherlands.
54 Heleno, S., M. Matias, P. Pina, and A.J. Sousa, 2015. Automated object-based classification of raininduced landslides with VHR multispectral images in Madeira Island, Natural Hazards & Earth System Sciences Discussions, 3(9).
55 Imani, M.B., T. Pourhabibi, M.R. Keyvanpour, and R. Azmi, 2012. A New Feature Selection Method Based on Ant Colony and Genetic Algorithm on Persian Font Recognition, International Journal of Machine Learning and Computing, 2(3): 278.
56 Jebur, M.N., B. Pradhan, and M.S. Tehrany, 2014. Detection of vertical slope movement in highly vegetated tropical area of Gunung pass landslide, Malaysia, using L-band InSAR technique, Geosciences Journal, 18(1): 61-68.   DOI
57 Saeys, Y., I. Inza, and P. Larranaga, 2007. A review of feature selection techniques in bioinformatics, Bioinformatics, 23(19): 2507-2517.   DOI
58 Puissant, A., S. Rougier, and A. Stumpf, 2014. Objectoriented mapping of urban trees using Random Forest classifiers, International Journal of Applied Earth Observation and Geoinformation, 26: 235-245.   DOI
59 Rau, J.Y., K.T. Chang, Y.C. Shao, and C.C. Lau, 2012. Semi-automatic shallow landslide detection by the integration of airborne imagery and laser scanning data, Natural Hazards, 61(2): 469-480.   DOI
60 Rodriguez-Galiano, V.F., B. Ghimire, J. Rogan, M. Chica-Olmo, and J.P. Rigol-Sanchez, 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS Journal of Photogrammetry and Remote Sensing, 67: 93-104.   DOI
61 Sameen, M. I. and B. Pradhan, 2017. A Two-Stage Optimization Strategy for Fuzzy Object-Based Analysis Using Airborne LiDAR and High-Resolution Orthophotos for Urban Road Extraction, Journal of Sensors, 6:1-17.   DOI
62 Sameen, M.I., B. Pradhan, H.Z. Shafri, M.R. Mezaal, and H. Bin Hamid, 2017. Integration of Ant Colony Optimization and Object-Based Analysis for LiDAR Data Classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5): 2055-2066.   DOI
63 Sheikhpour, R., M. A. Sarram, and R. Sheikhpour, 2016. Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer, Applied Soft Computing, 40: 113-131.   DOI
64 Barbarella, M., M. Fiani, and A. Lugli, 2013. Application of LiDAR-derived DEM for detection of mass movements on a landslide, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1(3): 89-98.
65 Anders, N.S., A.C. Seijmonsbergen, and W. Bouten, 2011. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping, Remote Sensing of Environment, 115(12): 2976-2985.   DOI
66 Antonini, G., F. Ardizzone, M. Cardinali, M. Galli, F. Guzzetti, and P. Reichenbach, 2002. Surface deposits and landslide inventory map of the area affected by the 1997 Umbria-Marche earthquakes, Bollettino Della Societa Geologica Italiana, 121(1): 843-853.
67 Ardizzone, F., M. Cardinali, M. Galli, F. Guzzetti, and P. Reichenbach, 2007. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar, Natural Hazards and Earth System Science, 7(6): 637-650.   DOI
68 Belgiu, M. and L. Dragut, 2014. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 96: 67-75.   DOI
69 Karegowda, A.G., A. Manjunath, and M. Jayaram, 2010. Comparative study of feature selection using gain ratio and correlation based feature selection, International Journal of Information Technology and Knowledge Management, 2(2): 271-277.
70 Karegowda, A.G., M. Jayaram, and A. Manjunath, 2010. Feature subset selection problem using wrapper approach in supervised learning, International Journal of Computer Applications, 1(7): 13-17.   DOI
71 Kursa, M.B. and W.R. Rudnicki, 2010. Feature selection with the Boruta package, Journal of Statistical Software, 36(11): 1-13.
72 Stumpf, A. and N. Kerle, 2011. Object-oriented mapping of landslides using Random Forests, Remote Sensing of Environment, 115(10): 2564-2577.   DOI
73 Benz, U. C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS Journal of Photogrammetry and Remote Sensing, 58(3): 239-258.   DOI
74 Blaschke, T., 2010. Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16.   DOI
75 Booth, A.M., J. J. Roering, and J. T. Perron, 2009. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109(3-4): 132-147.   DOI
76 Siyahghalati, S., A.K. Saraf, B. Pradhan, M.N. Jebur, and M.S. Tehrany, 2016. Rule-based semiautomated approach for the detection of landslides induced by 18 September 2011 Sikkim, Himalaya, earthquake using IRS LISS3 satellite images, Geomatics, Natural Hazards and Risk, 7(1): 326-344.   DOI
77 Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014. Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, 15(1): 1929-1958.
78 Tang, A. M., C. Quek, and G. S. Ng, 2005. GATSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms, Expert Systems with Applications, 29(4): 769-781.   DOI
79 Tehrany, M.S., B. Pradhan, and M.N. Jebuv, 2014. A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT-5 imagery, Geocarto International, 29(4): 351-369.   DOI
80 Van Den Eeckhaut, M., J. Poesen, F. Gullentops, L. Vandekerckhove, and J. Hervas, 2011. Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders, Quaternary Research, 75(3): 721-733.   DOI
81 Li, M., L. Ma, T. Blaschke, L. Cheng, and D. Tiede, 2016. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments, International Journal of Applied Earth Observation and Geoinformation, 49: 87-98.   DOI
82 Ladha, L. and T. Deepa, 2011. Feature selection methods and algorithms, International Journal on Computer Science and Engineering, 1(3): 1787-1797.
83 Lee, S., K.Y. Song, H.J. Oh, and J. Choi, 2012. Detection of landslides using web-based aerial photographs and landslide susceptibility mapping using geospatial analysis, International Journal of Remote Sensing, 33(16): 4937-4966.   DOI
84 Li, L. L. and J. K. Wang, 2012. SAR image ship detection based on ant colony optimization, 2012 5th International Congress on Image and Signal Processing (CISP), Chongqing, China, Oct. 16-18, pp. 1100-1103.
85 Li, X., X. Cheng, W. Chen, G. Chen, and S. Liu, 2015. Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms, Remote Sensing, 7(8): 9705-9726.   DOI
86 Liaw, A. and M. Wiener, 2002. Classification and regression by random Forest, R news, 2(3): 18-22.
87 Borkowski, A., Z. Perski, T. Wojciechowski, G. Jozkow, and A. Wojcik, 2011. Landslides mapping in Roznow Lake vicinity, Poland using airborne laser scanning data, Acta Geodyn. Geomater, 8(3): 163.
88 Van Den Eeckhaut, M., J. Poesen, G. Verstraeten, V. Vanacker, J. Moeyersons, J. Nyssen, and L. Van Beek, 2005. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides, Geomorphology, 67(3): 351-363.   DOI
89 Van Westen, C.J., E. Castellanos, and S.L. Kuriakose, 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview, Engineering Geology, 102(3): 112-131.   DOI
90 Borghuis, A., K. Chang, and H. Lee, 2007. Comparison between automated and manual mapping of typhoon triggered landslides from SPOT-5 imagery, International Journal of Remote Sensing, 28(8): 1843-1856.   DOI
91 Brardinoni, F., O. Slaymaker, and M.A. Hassan, 2003. Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data, Geomorphology, 54(3): 179-196.   DOI
92 Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32.   DOI
93 Wang, G., J. Joyce, D. Phillips, R. Shrestha, and W. Carter, 2013. Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data, Landslides, 10(4): 503-513.   DOI
94 Lin, C.W., C.M. Tseng, Y.H. Tseng, L.Y. Fei, Y.C. Hsieh, and P. Tarolli, 2013. Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography, Journal of Asian Earth Sciences, 62: 389-400.   DOI
95 Liu, T., Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, H. Y. Shum, 2011. Learning to detect a salient object, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2): 353-367.   DOI
96 Lippitt, C.D., J. Rogan, Z. Li, J.R. Eastman, and T.G. Jones, 2008. Mapping Selective Logging in Mixed Deciduous Forest, Photogrammetric Engineering & Remote Sensing, 74(10): 1201-1211.   DOI
97 Venkateswaran, K., T.S. Shree, N. Kousika, and N. Kasthuri, 2016. Performance Analysis of GA and PSO based Feature Selection Techniques for Improving Classification Accuracy in Remote Sensing Images, Indian Journal of Science and Technology, 9(16).
98 Verikas, A., A. Gelzinis, and M. Bacauskiene, 2011. Mining data with random forests: A survey and results of new tests, Pattern Recognition, 44(2): 330-349.   DOI
99 Wills, C. and T. McCrink, 2002. Comparing landslide inventories: The map depends on the method, Environmental & Engineering Geoscience, 8(4): 279-293.   DOI
100 Xue, B., M. Zhang, and W. N. Browne, 2013. Particle swarm optimization for feature selection in classification: A multi-objective approach, IEEE transactions on cybernetics, 43(6): 1656-1671.   DOI
101 Chen, W., X. Li, Y. Wang, G. Chen, and S. Liu, 2014. Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China, Remote Sensing of Environment, 152: 291-301.   DOI
102 Bui, D.T., B. Pradhan, O. Lofman, I. Revhaug, and O.B. Dick, 2012. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS, Computers & Geosciences, 45: 199-211.   DOI
103 Cao, L. Y. and L. Z. Xia, 2007. An ant colony optimization approach for SAR image segmentation, 2007 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Beijing, China, Nov. 2-4, vol. 1, pp. 296-300.
104 Chen, Q., Y. Chen, and W. Jiang, 2016. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection, Sensors, 16(8): 1204.   DOI
105 Chen, T., J.C. Trinder, and R. Niu, 2017. Object-Oriented Landslide Mapping Using ZY-3 Satellite Imagery, Random Forest and Mathematical Morphology for the Three-Gorges Reservoir, China, Remote Sensing, 9(4): 333.   DOI