DOI QR코드

DOI QR Code

On the Use of Finite Rotation Angles for Spacecraft Attitude Control

  • Kim, Chang Joo (Department of Aerospace Information Systems Engineering, Konkuk University) ;
  • Hur, Sung Wook (Department of Aerospace Information Systems Engineering, Konkuk University) ;
  • Ko, Joon Soo (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2016.12.30
  • Accepted : 2017.06.13
  • Published : 2017.06.30

Abstract

This paper examines finite rotation angle (FRA) applications for spacecraft attitude control. The coordinate transformation matrix and the attitude kinematics represented by FRAs are introduced. The interpolation techniques for the angular orientations are thoroughly investigated using the FRAs and the results are compared to those using traditional methods. The paper proposes trajectory description techniques by using extremely smooth polynomial functions of time, which can describe point-to-point attitude maneuvers in a realizable and accurate manner with the help of unique FRA features. In addition, new controller design techniques using the FRAs are developed by combining the proposed interpolation techniques with a model predictive control framework. The proposed techniques are validated through their attitude control applications for an aggressive point-to-point maneuver. Conclusively, the FRAs provide much more flexibility than quaternions and Euler angles when describing kinematics, generating trajectories, and designing attitude controllers for spacecraft.

Keywords

Acknowledgement

Supported by : Konkuk University

References

  1. Stevens, B. R. and Lewis, F. L., Aircraft Control and Simulation, John Wiley & Son, Inc., New York, 1992, pp. 39-44.
  2. Stengel, R. F., Flight Dynamics, Princeton University Press, Princeton, 2004, pp. 182-187.
  3. Wie, B., Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, AIAA, New York, 2008, pp. 329-340, 404-486.
  4. Felippa, C. A. and Haugen, B., "Unified Formulation of Small-Strain Corotational Finite Elements: I. Theory", Center for Aerospace Structures, Rept. CU-CAS-05-02, College of Engineering, University of Colorado, January 2005.
  5. Verthm, J. M. V. and Bishop, L. M., Essential Mathematics for Games and Interactive Applications: A Programmer's Guide, 2nd ed., Elsevier Inc., New York, 2008, pp. 141-150, 431-492.
  6. Thomson, D. G. and Bradley, R., "Mathematical Definition of Helicopter Maneuvers", Journal of the American Helicopter Society, Vol. 24, No. 4, 1997, pp. 307-309. DOI: 10.4050/JAHS.42.307
  7. Cao, Y., Zhang G. and Su, Y., "Mathematical Modeling of Helicopter Aerobatic Maneuvers", Aircraft Engineering and Aerospace Technology, Vol. 76, No. 2. 2004, pp. 170-178. DOI: 10.1108/00022660410526033
  8. Kim, C. J., Lee, J., Byun, Y. H. and Yu, Y. H., "Nonlinear Optimal Control Analysis of Helicopter Maneuver Problems Using the Indirect Method", Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 51, No. 171, 2008, pp. 43-51. DOI: 10.2322/tjsass.51.43
  9. Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, Inc., New York, 1972, pp. 118-120.
  10. Shuster, M. D., "A Survey of Attitude Representations", Journal of the Astronautical Sciences, Vol. 41, No. 4, 1993, pp. 439-517.
  11. Ross, I. M. and Fahroo, F., "Pseudospectral Knotting Methods for Solving Optimal Control Problems", Journal of Guidance, Control and Dynamics, Vol. 27, No. 3, May-June 2004, pp. 397-405. DOI: 10.1109/TAC.2005.860248
  12. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P. and Rao, A. V., "Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, November- December 2006, pp. 1435-1440. DOI: 10.2514/1.20478
  13. Kim, C. J., Sung, S. K., Park, S. H. and Jung, S. N., "Selection of Rotorcraft Models for Application to Optimal Control Problems", Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1386-1399. DOI: 10.2514/1.33212
  14. Kim, C. J., Lee, J., Byun, Y. H. and Yu, Y. H., "Nonlinear Optimal Control Analysis of Helicopter Maneuver Problems Using the Indirect Method", Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 51, No. 171, 2008, pp. 43-51. DOI: 10.2322/tjsass.51.43
  15. Kim, M. J., Hong, J. S. and Kim, C. J., "Finding Optimal Controls for Helicopter Maneuvers Using Direct Multiple- Shooting Method", International Journal of Aeronautical & Space Science, Vol. 11, No. 1, March 2010, pp. 10-18. DOI:10.5139/IJASS.2010. 11. 1.010
  16. Kim, C. J., Lee, J. H., Park, S. H., Sung, S. K. and Jung, S. N., "Nonlinear Optimal Control Analysis Using State- Dependent Matrix Exponential and Its Integrals", Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1386-1399. DOI: 10.2514/1.38886.
  17. Kim, C. J., Sung, S. K., Yang, C. D. and Yu, Y. H., "Rotorcraft Trajectory Tracking Using the Sate-Dependent Riccati Equation Controller," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 51, No. 173, 2008, pp. 184-192. DOI: 10.2322/tjsass.51.184
  18. Show, L. L., Juang, J. C., Lin, C. T. and Jan, Y. W., "Spacecraft Robust Attitude Tracking Design:PID Control Approach", Proceedings of the American Control Conference Anchorage, AK May 8-10, 2002. DOI: 10.1109/ ACC.2002.1023210
  19. Bang, H. C., Lee, K. H. and Lim, H. C., "Threeaxis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential", International Journal of Aeronautical and Space Sciences, Vol. 4, No. 1, 2003, pp. 99- 109. DOI : 10.5139/IJASS.2003.4.1.099
  20. Chen, Y. P. and Lo, S. C., "Sliding-Mode Controller Design for Spacecraft Attitude Tracking Maneuvers", IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4, 1993, pp. 1328-1333. DOI: 10.1109/7.259536
  21. Zelei, A. M., "Computed Torque Control and Utilization of Parametric Excitation for Underactuated Dynamical Systems", PHD. Thesis, Mechanical Engineering, Budapest University of Technology and Economics, February 27, 2015, pp. 3-12.
  22. Siciliano, B. and Khatib, O. (eds.), Handbook of Robotics, Springer, 2008. ISBN 978-3-540-23957-4.
  23. Kang, W. and Bedrossian, N., "Pseudospectral Optimal Control Theory Makes Debut Flight-Saves NASA $1M in Under Three Hours", SIAM News, Vol. 40, No. 7, 2007, pp. 1-3.
  24. Ross, I. M. and Karpenko, M., "A Review of Pseudospectral Optimal Control: From Theory to Flight", Annual Reviews in Control, Vol. 36, No. 2, 2012, pp. 182-197. DOI:10.1016/j.arcontrol.2012.09.002.