• Title/Summary/Keyword: Point Configurations

Search Result 159, Processing Time 0.029 seconds

Efficiency Analysis of Photovoltaic Configurations in Wearable Charging Applications (웨어러블 충전 어플리케이션의 태양전지 배열에 따른 효율 분석)

  • Lee, Hyunji;Kim, Katherine A.
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.353-354
    • /
    • 2015
  • 요즘, 태양에너지를 이용하는 웨어러블 전자기기가 많이 개발되고 있다. 이런 기기들은 태양전지에 도달하는 태양빛이 달라질 때, 태양전지와 컨버터의 연결방법이 시스템 효율에 많은 영향을 끼친다. 그래서 이 연구에서 9개의 테스트 경우를 5개의 다른 태양전지와 컨버터 연결방법으로 가정하여 전체 시스템 효율을 계산하였다. 5개의 연결방법은 직렬, 병렬, cascaded 컨버터, differential power processing (DPP) 컨버터의 직렬, DPP 컨버터의 병렬연결이다. 9개의 테스트 경우에서, 태양전지에 태양빛이 균일하게 도달할 경우, 병렬연결과 DPP 컨버터의 병렬연결이 가장 높은 효율을 보여주었다. 하지만 태양빛이 불균일하게 도달할 경우, DPP 컨버터의 연결이 가장 높은 효율을 보여주었다. 컨버터의 효율을 85%로 가정하면 DPP 컨버터를 병렬로 연결했을 경우, 이상적 경우를 제외한 8개의 테스트 경우에서 전체 시스템의 평균 효율은 99.36%였다. (이 계산은 Maximum Power Point Tracking 손실을 포함하지 않았다.)

  • PDF

IDEAL RIGHT-ANGLED PENTAGONS IN HYPERBOLIC 4-SPACE

  • Kim, Youngju;Tan, Ser Peow
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1131-1158
    • /
    • 2019
  • An ideal right-angled pentagon in hyperbolic 4-space ${\mathbb{H}}^4$ is a sequence of oriented geodesics ($L_1,{\ldots},L_5$) such that $L_i$ intersects $L_{i+1},i=1,{\ldots},4$, perpendicularly in ${\mathbb{H}}^4$ and the initial point of $L_1$ coincides with the endpoint of $L_5$ in the boundary at infinity ${\partial}{\mathbb{H}}^4$. We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups ${\langle}A,B{\rangle}$ of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.

IDEAL RIGHT-ANGLED PENTAGONS IN HYPERBOLIC 4-SPACE

  • Kim, Youngju;Tan, Ser Peow
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.595-622
    • /
    • 2019
  • An ideal right-angled pentagon in hyperbolic 4-space ${\mathbb{H}}^4$ is a sequence of oriented geodesics ($L_1,{\ldots},L_5$) such that Li intersects $L_{i+1},\;i=1,\;{\ldots},\;4$, perpendicularly in ${\mathbb{H}}^4$ and the initial point of $L_1$ coincides with the endpoint of $L_5$ in the boundary at infinity ${\partial}{\mathbb{H}}^4$. We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups ${\langle}A,B{\rangle}$ of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.

Theoretical Studies of Surface Diffusion : Multidimensional TST and Effect of Surface Vibrations

  • 곽기정;신석민;이상엽;신국조
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 1996
  • We present a theoretical formulation of diffusion process on solid surface based on multidimensional transition state theory (TST). Surface diffusion of single adatom results from hopping processes on corrugated potential surface and is affected by surface vibrations of surface atoms. The rate of rare events such as hopping between lattice sites can be calculated by transition state theory. In order to include the interactions of the adatom with surface vibrations, it is assumed that the coordinates of adatom are coupled to the bath of harmonic oscillators whose frequencies are those of surface phonon modes. When nearest neighbor surface atoms are considered, we can construct Hamiltonians which contain terms for interactions of adatom with surface vibrations for the well minimum and the saddle point configurations, respectively. The escape rate constants, thus the surface diffusion parameters, are obtained by normal mode analysis of the force constant matrix based on the Hamiltonian. The analysis is applied to the diffusion coefficients of W, Ir, Pt and Ta atoms on the bcc(110) plane of W in the zero-coverage limit. The results of the calculations are encouraging considering the limitations of the model considered in the study.

Performance Evaluation of Real-time Linux for an Industrial Real-time Platform

  • Jo, Yong Hwan;Choi, Byoung Wook
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.28-35
    • /
    • 2022
  • This paper presents a performance evaluation of real-time Linux for industrial real-time platforms. On industrial platforms, multicore processors are popular due to their work distribution efficiency and cost-effectiveness. Multicore processors, however, are not designed for applications with real-time constraints, and their performance capabilities depend on their core configurations. In order to assess the feasibility of a multicore processor for real-time applications, we conduct a performance evaluation of a general processor and a low-power processor to provide an experimental environment of real-time Linux on both Xenomai and RT-preempt considering the multicore configuration. The real-time performance is evaluated through scheduling latency and in an environment with loads on the CPU, memory, and network to consider an actual situation. The results show a difference between a low-power and a general-purpose processor, but from developer's point of view, it shows that the low-power processor is a proper solution to accommodate low power situations.

Study on Dynamic Crawling of The Five-bar Planar Mechanism (5절 평면형 메커니즘의 동적 포복에 관한 연구)

  • Lee J.H.;Lim N.S.;Kim W.K.;Yi B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1045-1049
    • /
    • 2005
  • In this paper, the dynamic crawling of a five-bar planar mechanism is investigated. One complete cycle of the crawling selected in this study consists of four different steps, i) sliding at one contact point between the mechanism and the ground, ii) changing its configuration without sliding at two contact points, iii) sliding at the other contact point, and iv) again changing its configuration without sliding at two contact points. In this type of crawling, the crawling mechanism maintains the shape of the parallel structure throughout a complete crawling cycle. The modeling algorithm for serial manipulators proposed by M. Thomas and et al.[1] is employed by introducing imaginary joints and links which represent the contact interfaces between the one end of the mechanism and the ground, while the other end of the mechanism is regarded as an end-effector of the imaginary serial manipulator which treats the reaction force and torque at the contact point as external forces. Then, a complete cycle of dynamic crawling of the mechanism is investigated through various computer simulations. The simulation result show that the stable crawling characteristics of the mechanism could be secured when the proper configurations depending on specified frictional constraints are met.

  • PDF

A new approach for measurement of anisotropic tensile strength of concrete

  • Sarfarazi, Vahab;Faridi, Hamid R.;Haeri, Hadi;Schubert, Wulf
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.269-282
    • /
    • 2015
  • In this paper, a compression to tensile load converter device was developed to determine the anisotropic tensile strength of concrete. The samples were made from a mixture of water, fine sand and cement, respectively. Concrete samples with a hole at its center was prepared and subjected to tensile loading using the compression to tensile load converter device. A hydraulic load cell applied compressive loading to converter device with a constant pressure of 0.02 MPa per second. Compressive loading was converted to tensile stress on the sample because of the overall test design. The samples have three different configurations related to loading axis; 0, $45^{\circ}$, $-45^{\circ}$. A series of finite element analysis were done to analyze the effect of hole diameter on stress concentration of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, Brazilian test and three point loading test were also performed to compare the results from the three methods. Results obtained by this device were quite encouraging and show that the tensile strengths of concrete were similar in different directions because of the homogeneity of bonding between the concrete materials. Also, the indirect tensile strength was clearly lower than the Brazilian test strength and three point loading test.

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending (새로운 박판샌드위치 판재의 삼점굽힘거동)

  • Lee, Jung-In;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.

A Study on the Development of Tube-to-Support Nonlinear Impact Analysis Model (튜브와 지지대 사이의 비선형 충격해설모델 개발에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.515-524
    • /
    • 1995
  • Tubes in heat exchanger of fuel rods in reactor core are supported at intemediate point by support p0lates or springs. Current practice is, in case of heat exchanger, to allow clearance between tube and support plate for design and manufacturing consideration. And in case of fuel rod the clearance in support point can be generated due to the support spring force relaxation. Flow-induced vibration of a tube can cause it to impact or rub against support plate or against adjacent tubes and can result in fretting-wear. The tube-to- support dynamic interaction is used to relate experimental wear data from single-span test rigs to real multi-span heat exchanger configurations. The dynamic interaction cna be measured during experimental wear tests. However, the dynamic interaction is difficult to measure in real heat exchangers and, therefore, analytical techniques are required to estimate this interaction. This paper describels the nonlinear impact model of DAGS(Dynamic Analysis of Gapped Structure) code which simulates the tube response to external sinusodial or step excitation and predicts tube motion and tube-to-support dynamic interaction. Three experimental measurements-two single span rods excited by sinusodial force and a two span rod impacted by a steel ball are compared from the simulation nonlinear model of DAGS code. The simulation results from DAGS code are in good agreement with measurements. Therefore, the developed model of DAGS code is good analytical tool for estimating tube-to-support dynamic interaction in real heat exchangers.

  • PDF

Heat Transfer from Single and Arrays of Impinging Water Jets(I)-Single Water Jet- (단일수분류 및 수분류군에 의한 열전달(I)-단일수분류-)

  • Eom, Gi-Chan;Lee, Jong-Su;Yu, Ji-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1105-1114
    • /
    • 1997
  • The heat transfer characteristics of free surface water jet impinging normally against a flat uniform heat flux surface were investigated. This deals with the effect of three nozzle configurations (Cone type, Reverse cone type, Vertical circular type) on the local and the average heat transfer. Heat transfer measurements were made for water jet issuing from a nozzle of which exit diameter 8 mm. The experimental conditions investigated are Reynolds number range of 27000 ~ 70000( $V_{O}$=3 ~ 8 m/s), nozzle-to-target plate distances H/D=2 ~ 10, and radial distance from the stagnation point r/D ~ = 0 ~ 7.42. For all jet velocities of H/D=2, the local Nusselt number decreased monotonically with increasing radial distance. However, for H/D from 4 to 10, and for the jet velocity $V_{O}$.geq.7 m/s for Cone type nozzle and $V_{O}$.geq.6 m/s for the other type nozzles, the Nusselt number distributions exhibited secondary peaks at r/D=3 ~ 3.5. For Reverse cone type nozzle and Vertical circular nozzle, the maximum stagnation point heat transfer and the maximum average heat transfer occurs at H/D=8. But for the Cone type nozzle, the maximum stagnation and average heat transfer occurs at H/D=10, 4, respectively. From the optimum nozzle-to-target plate distance, the stagnation and the average heat transfer reveal the following ranking: Reverse cone type nozzle, Vertical circular type nozzle, Cone type nozzle.ozzle.