• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.026 seconds

A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT

  • Draiche, Kada;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.697-711
    • /
    • 2021
  • In this work, a simple quasi 3-D parabolic shear deformation theory is developed to examine the bending response of antisymmetric cross-ply laminated composite plates under different types of mechanical loading. The main feature of this theory is that, in addition to including the transverse shear deformation and thickness stretching effects, it has only five-unknown variables in the displacement field modeling like Mindlin's theory (FSDT), yet satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without requiring a shear correction factor. The static version of principle of virtual work was employed to derive the governing equations, while the bending problem for simply supported antisymmetric cross-ply laminated plates was solved by a Navier-type closed-form solution procedure. The adequacy of the proposed model is handled by considering the impact of side-to-thickness ratio on bending response of plate through several illustrative examples. Comparison of the obtained numerical results with the other shear deformation theories leads to the conclusion that the present model is more accurate and efficient in predicting the displacements and stresses of laminated composite plates.

Structural Analysis of CBS (Composite Basement Wall System)-RIB Underground Structures Using Numerical Modeling (수치해석을 통한 강합성 빔보강 지하 구조물의 거동분석)

  • Yoo, Han-Kyu;Kim, Yeon-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.39-44
    • /
    • 2010
  • In case of the design method, which is used in the inside and outside of the country, on corrugated multi plate structures, section modulus would be determined by assuming 2-dementioanl equivalent section of those structures. However, it is impossible to consider 3-dimentional effects when 2-dimentional design method is applied since structures are reinforced with a pattern of the 1200, 1600 mm reinforcements except the 800 mm reinforcement. Thus, in this study, technical specification standard is analyzed for the existing corrugated multi plate design methods, and section strengths, moments, and so on of equivalent and practical sections are compared and estimated using 3-dimentional FEM (finite element method) for semicircles and architectural features widely used. Based on the results of that analysis, analytical basis for 3-dimentional design of the CBS-RIB is suggested.

Direct Numerical Simulation of Composite laminates Under low velocity Impact (저속충격을 받는 적층복합재료 평판의 직접 수치모사)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. But it is well known that the conventional approach based on the homogenization has the limit in description of damage. The work reported here is an effort in getting better predictions of dynamic behavior and damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials are investigated and compared with the results of the homogenized model which has been used in the conventional approach to impact analysis. Also the multiscale model based on DNS concept is developed in order to enhance the effectiveness of impact analysis, and we present the results of multiscale analysis considering micro and macro structures simultaneously.

On the Structural Analysis Using the Isogeometry Analysis Approach (등기하 해석법을 이용한 구조해석)

  • Lee, Joo-Sung;Chang, Kyoung-Sik;Roh, Myoung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • In the present work, isogeometric analysis in linear elasticity problem is conducted using the basis functions from NURBS. The objectives of isogeometric analysis introduced is to integrate both geometric modeling(CAD) and computational analysis(CAE), and this can be accomplished from direct usage of geometric modeling by NURBS as the computational mesh. The merit of the isogeometry analysis is that NURBS surface are able to represent exact geometry from the control points and knot vectors, and also subsequent refinement is relatively simple relatively. In order to verify the computer codes developed in this study, it has been applied to two structural models of which geometry are simple ; 1) circular cylinder subjected to the constant internal pressure loading, 2) square plate with circular hole at center subjected to uniform tension. The exact solutions of these two models are available. Convergence of the approximate solutions by the present code for the isogeometry analysis are investigated by mesh refinement with inserting knots (h-refinement) and by mesh refinement with order elevation of the basis functions (p-refinement).

Computational Fluid Dynamic Modeling for Internal Antenna Type Inductively Coupled Plasma Systems (CFD를 이용한 내장형 안테나 유도 결합 플라즈마 시스템 모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.164-175
    • /
    • 2009
  • CFD is used to analyze gas flow characteristics, power absorption, electron temperature, electron density and chemical species profile of an internal antenna type inductively coupled plasma system. An optimized grid generation technology is used for a complex real-scale models for industry. A bare metal antenna shows concentrated power absorption around rf a feeding line. Skin depth of power absorption for a system is modeled to 50 mm, which is reported 53 mm by experiments. For an application of bipolar plates for hydrogen fuel cells, multi-sheet loading ICP nitriding system is proposed using an internal ICP antenna. It shows higher atomic nitrogen density than reported simple pulsed dc nitriding systems. Minimum gap between sheets for uniform nitriding is modeled to be 39 mm.

A Study of Crust Structure at Svalbard Archipelago in Arctic Area by Using Gravity Data (중력자료를 이용한 북극 스발바드 군도의 지각구조연구)

  • Yu, Sang-Hoon;Yi, Song-Suk;Min, Kyung-Duck
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • Gravity characteristics are investigated in the vicinity of the DASAN scientific station, located at the Svalbard Archipelago, the Arctic using ArcGP data. Boundary effects of free-air gravity anomalies, which appeared generally at the continental margin, are erased after Bouguer correction was applied. Complete Bouguer anomalies produced after terrain correction by GrOPO30 show that gravity anomalies increase from continent to marine. This phenomena seem to be related to the rise of Moho discontinuity. The cut-off frequency of 0.16 was decided after power spectrum analysis and the gravity anomalies were divided into two parts. Residual anomalies in high frequency part show that characteristics of high values along the faults and of low values related to thick sediments in the continent. Characteristic is low values from basement subsidence of continental slope or thick sediments in the marine. The undulation of Moho discontinuity from 3-D inversion modeling show typical characteristics of continental margin that become higher from Svalbard archipelago to Knipovich ridge bordering Eurasian plate.

  • PDF

Development of Stiffness Estimation Algorithm for Nonlinear Static Analysis of Bilinear Material Model (전단벽 모형화 방법에 따른 구조해석 신뢰성에 대한 고찰)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.718-723
    • /
    • 2017
  • When structural analysis modelling methods of practical fields are investigated, a slab is generally modeled by a finite element mesh using plate elements and a shear wall is modeled using a shell element or wall element for 3-D structural analysis. The point worthy of notice in this practice is that a shear wall is modelled using only one wall or shell element divided by floors and column lines to produce structural models. The modeling method like this can cause analysis errors according to the type of computer programs in use, and these errors reduce the reliability of the analysis results. Therefore, to secure the reliability of structural analysis, studies of the causes of errors and finding reasonable modeling methods are necessary. In this study, the causes of analysis errors according to the modelling methods of a shear wall, which are used in practical fields, were investigated and some considering matters for modelling a shear wall are presented to reduce the analysis errors on these analysis results.

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.

Noise Modeling for CR Images of High-strength Materials (고강도매질 CR 영상의 잡음 모델링)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.95-102
    • /
    • 2008
  • This paper presents an appropriate approach for modeling noise in Computed Radiography(CR) images of high strength materials. The approach is specifically designed for types of noise with the statistical and nonlinear properties. CR images Ere degraded even before they are encoded by computer process. Various types of noise often contribute to contaminate radiography image, although they are detected on digitalization. Quantum noise, which is Poisson distributed, is a shot noise, but the photon distribution on Image Plate(IP) of CR system is not always Poisson process. The statistical properties are relative and case-dependant due to its material characteristics. The usual assumption of a distribution of Poisson, binomial and Gaussian statistics are considered. Nonlinear effect is also represented in the process of statistical noise model. It leads to estimate the noise variance in regions from high to low intensity, specifying analytical model. The analysis approach is tested on a database of steel tube step-wedge CR images. The results are available for the comparative parameter studies which measure noise coherence, distribution, signal/noise ratios(SNR) and nonlinear interpolation.

Delamination Analysis of Orthotropic Laminated Plates Using Moving Nodal Modes (이동절점모드를 사용한 직교이방성 적층평판의 층간분리해석)

  • Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2012
  • In this study, the delamination analysis has been implemented to investigate the initiation and propagation of crack in composite laminates composed of orthotropic materials. A simple modeling was achieved by moving nodal technique without re-meshing work when crack propagation occurred. This paper aims at achieving two specific objectives. The first is to suggest a very simple modeling scheme compared with those applied to conventional h-FEM based models. To verify the performance of the proposed model, analysis of double cantilever beams with composite materials was implemented and then the results were compared with reference values in literatures. The second one is to investigate the behavior of interior delamination problems using the proposed model. To complete these objectives, the full-discrete-layer model based on Lobatto shape functions was considered and energy release rates were calculated using three-dimensional VCCT(virtual crack closure technique) based on linear elastic fracture mechanics.