DOI QR코드

DOI QR Code

Delamination Analysis of Orthotropic Laminated Plates Using Moving Nodal Modes

이동절점모드를 사용한 직교이방성 적층평판의 층간분리해석

  • 안재석 (영남대학교 건설시스템공학과)
  • Received : 2012.06.29
  • Accepted : 2012.08.01
  • Published : 2012.08.31

Abstract

In this study, the delamination analysis has been implemented to investigate the initiation and propagation of crack in composite laminates composed of orthotropic materials. A simple modeling was achieved by moving nodal technique without re-meshing work when crack propagation occurred. This paper aims at achieving two specific objectives. The first is to suggest a very simple modeling scheme compared with those applied to conventional h-FEM based models. To verify the performance of the proposed model, analysis of double cantilever beams with composite materials was implemented and then the results were compared with reference values in literatures. The second one is to investigate the behavior of interior delamination problems using the proposed model. To complete these objectives, the full-discrete-layer model based on Lobatto shape functions was considered and energy release rates were calculated using three-dimensional VCCT(virtual crack closure technique) based on linear elastic fracture mechanics.

본 논문에서는 직교이방성 적층평판에서의 균열생성 및 전파로 이루어진 층간분리해석을 다룬다. 기존의 p-유한요소가 가지고 있는 요소의 강건성을 균열진전해석에 적용하여, 균열진전시 모델링을 재구성하지 않고, 균열 선단부에 해당되는 꼭지점 모드의 위치만을 이동하도록 하여, 요소망을 단순화시켰다. 이와 같은 층간분리해석에 대해서 이 논문에서의 주요 목적은 다음 두 가지이다. 첫째, 적층복합 재료의 층간분리해석 시, 일반적인 유한요소 모델과 비교하여 매우 간단한 요소망을 가지는 모델을 제안하는 것이다. 모델의 타당성을 평가하기 위해 적층 복합재료로 구성된 이중 외팔보 해석을 통하여, 기존 참고문헌 값과의 비교를 수행하였다. 둘째, 제안된 모델을 내부균열을 갖는 적층평판의 층간분리해석에 적용하여 여러 가지 거동 양상에 대한 평가이다. 이와 같은 목적을 수행하기 위하여 로바토 형상함수를 이용한 완전층별요소가 고려되었으며, 선형탄성파괴역학에 기초한 3차원 가상균열닫힘법을 이용하여 에너지 방출률을 산정하였다.

Keywords

References

  1. 안재석, 우광성 (2009) 직교이방성 적층구조 해석을 위한 부분-선형 층별이론에 기초한 저매개변수요소, 한국전산구조공학회 논문집, 22(2), pp.189-196.
  2. 우광성 (1990) p-수렴방식에 기초한 계층요소 쉘 모델, 한국전산구조공학회 논문집, 3(1), pp.59-70.
  3. 우광성, 양승호, 안재석, 신영식 (2009) p-수렴 완전층별모델에 의한 일면패치로 보강된 원공 적층판의 휨효과, 한국전산구조공학회 논문집, 22(5), pp.463-474.
  4. 하상렬 (2009) 응집영역요소를 이용한 균열진전 모사, 한국전산구조공학회 논문집, 22(6), pp.519-525.
  5. Ahn, J.S., Basu, P.K. (2011a) Locally Refined p-FEM Modeling of Patch Repaired Plates, Composite Structures, 93(7), pp.1704-1716. https://doi.org/10.1016/j.compstruct.2011.01.016
  6. Ahn, J.S., Basu, P.K., Woo, K.S. (2011b) Hierarchic Layer Models for Anisotropic Laminated Plates, KSCE Journal of Civil Engineering, 15(6), pp.1067-1080. https://doi.org/10.1007/s12205-011-1142-8
  7. ANSYS (2007) Version 11, ANSYS Theory Manual, ANSYS, Inc., USA.
  8. Camanho, P.P., Davila, C.G., de Moura, M.F. (2003) Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials, Journal of Composite Materials, 37(16), pp.1415 -1438. https://doi.org/10.1177/0021998303034505
  9. Davila, C.G., Camanho, P.P., Turon, A. (2007) Cohesive Elements for Shells, NASA/TP-2007-214869.
  10. Davila, C.G., Johnson, E.R. (1993) Analysis of Delamination Initiation in Postbuckled Droppedply Laminates, AIAA Journal, 31(4), pp.721-727. https://doi.org/10.2514/3.49019
  11. Jin, Z.H., Sun, C.T. (2005) Cohesive Zone Modeling of Interface Fracture in Elastic Bimaterials, Engineering Fracture Mechanics, 72(12), pp.1805-1817. https://doi.org/10.1016/j.engfracmech.2004.09.011
  12. Kim, R.Y., Soni, S.R. (1984) Experimental and Analytical Studies on the Onset of Delamination in Laminatd Composites, Journal of Composite Materials, 18(1), pp.70-80. https://doi.org/10.1177/002199838401800106
  13. Krueger, R. (2004) Virtual Crack Closure Technique: History, Approach, and Applications, Applied Mechanics Reviews, 57(2), pp.109-141. https://doi.org/10.1115/1.1595677
  14. Matthews, F.L., Camanho, P.P. (1999) Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates, Journal of Composite Materials, 33(10), pp.906-927. https://doi.org/10.1177/002199839903301002
  15. Meo, M., Thieulot, E. (2005) Delamination Modeling in a Double Cantilever Beam, Composite Structures, 71, pp.429-434. https://doi.org/10.1016/j.compstruct.2005.09.026
  16. Rybicki, E.F., Kanninen, M.F. (1977) A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral, Eng. Fract. Mech., 9, pp.931-938. https://doi.org/10.1016/0013-7944(77)90013-3
  17. Solin, P., Segeth, K., Dolezel, I. (2004) Higherorder Finite Element Methods, Chapman & Hall/CRC.
  18. Turon, A., Camanho, P.P., Costa, J., Davila, C.G. (2006) A Damage Model for the Simulation of Delamination in Advanced Composites Under Variablemode Loading, Mechanics of Materials, 38, pp.1072-1089. https://doi.org/10.1016/j.mechmat.2005.10.003
  19. Whitney, J.M., Nuismer, R.J. (1974) Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations, Journal of Composite Materials, 8(3), pp.253-265. https://doi.org/10.1177/002199837400800303
  20. Xie, D., Biggers, Jr S.B. (2006a) Strain Energy Release rate Calculation for a Moving Delamination Front of Arbitrary Shape Based on Virtual Crack Closure Technique. Part I: Formulation and Validation, Engineering Fracture Mechanics, 73(6), pp.77-785.
  21. Xie, D., Biggers, Jr S.B. (2006b) Strain Energy Release Rate Calculation for a Moving Delamination Front of Arbitrary Shape Based on Virtual Crack Closure Technique. Part II: Formulation and Validation, Engineering Fracture Mechanics, 73(6), pp.786-801. https://doi.org/10.1016/j.engfracmech.2005.07.014