• Title/Summary/Keyword: Plastic IC

Search Result 84, Processing Time 0.029 seconds

Hygrothermal Cracking Analysis of Plastic IC Package (플라스틱 IC 패키지의 습열 파괴 해석)

  • 이강용;양지혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-59
    • /
    • 1998
  • The purposes of the paper are to consider the failure phenomenon based on delamination and crack when the encapsulant of plastic IC package under hygrothermal loading in the IR soldering process is on elastic and viscoelastic behavior due to the temperature and to show the optimum design using fracture mechanics. The model for analysis is the plastic SOJ package with a dimpled diepad. The package model with the perfect delamination between chip and diepad is chosen to estimate the resistance to fracture by calculating J-integrals in low temperature and C(t)-integrals in high temperature with the change of the design under hygrothermal loading. The optimum design to depress the delamination and crack in the plastic IC package is presented.

  • PDF

Visco-Elastic Fracture Analysis of IC Package under Thermal Loading (열하중하에 있는 IC 패키지의 점탄성 파괴해석)

  • 이강용;양지혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • The purpose of the paper is to protect the damage of plastic IC package with searching the cause of the fracture due to the delamination and crack when the encapsulant of plastic IC package is on viscoelastic behavior with the effect of creep on high temperature, The model for analysis is the plastic SOJ package with dimpled diepad in the IR soldering process of surface mounting technology. The risk of delamination with calculating the distribution of viscoelastic thermal stress in the package without the crack in the surface mounting process is checked. The package model with the perfect delamination between chip and diepad is chosen to estimate the resistance against fracture in thermal loading with calculating C (t)-integrals according to the change of the design. The optimum design to depress the delamination and crack is presented.

  • PDF

Application of Stress Optimization for Preventing the Delamination of the Plastic IC Package in Reflow Soldering Process (리플로 납땜과정에서 플라스틱 IC 패키지의 박리방지를 위한 응력최적설계의 적용)

  • Kim, Geun-Woo;Lee, Kang-Yong;Kim, Ok-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.709-716
    • /
    • 2004
  • In order to prevent the interface delamination of an plastic IC package in the infrared (IR) soldering process, we tried to reduce stress by parameterization, sensitivity analysis and unconstraint optimization. The design variables of dimensions and material properties are determined among all the possible variables from the parametric study. Their optimized values are determined by applying the unconstraint optimization to the parameterized IC package. The maximum von-Mises stress value decreases greatly by optimum design.

IC Package 기술개발 동향

  • O, Haeng-Seok;Jeong, Cheol-O;Jo, Jin-Ho;Sin, Seong-Mun
    • Electronics and Telecommunications Trends
    • /
    • v.4 no.4
    • /
    • pp.17-33
    • /
    • 1989
  • Hermetic 패키지는 재질 특성상 Plastic 패키지보다 환경내구성이 우수하고 수명이 긴 장점이 있으나, 가격이 높고 사용자의 주문에 의한 수작업으로 수급이 어려운 단점이 있다. 한편 Plastic 패키지는 가격이 낮고 수급이 용이한 반면 환경 특히 습기로 인한 고장으로 Hermetic 패키지보다 신뢰도가 낮아서 고신뢰도를 요구하는 군사용 및 산업용기기에서의 사용은 기피되어 왔다. 그러나 최근 Plastic 패키지의 단점을 개선하려는 노력으로 반도체칩의 수율 향상과 더불어 습기에 강한 재료가 개발되고 웨이퍼 제조기술이 발전됨에 따라 Plastic 패키지의 신뢰도가 향상되어 통신기기등 산업용 기기에까지 사용영역을 확대해 가고 있다. 또한 국내의 통신시장 개방에 따라 통신시스팀의 성능개선 및 신뢰성 제고를 통한 대외 경쟁력이 요구되어 통신시스팀에 Plastic 패키지 사용에 대한 인식이 증대하는 추세이다. 본고에서는 IC 패키지(Hermetic, Plastic)의 특성 및 성능을 비교 분석하고 이와 병행하여 Plastic 패키지의 최근 기술동향을 파악함으로써 통신시스팀에 사용하는 IC 패키지에 대한 고려사항을 제시하였다.

Hygrothermal Fracture Analysis of Plastic IC Package in Reflow Soldering Process (리플로 납땜 공정에서 플라스틱 IC 패키지의 습기 및 열로 인한 파손문제 해석)

  • Lee, Kang-Yong;Lee, Taek-Sung;Lee, Kyung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1347-1355
    • /
    • 1996
  • The purpose of this paper is to evaluate the delamination and fracture integrity of the IC plastic package under hygrothermal loading by stress analysis and fracture mechanics approaches. The plastic SOJ package with a dimpled diepad under the reflow slodering process of IR heating type is considered. On the package without a crack, the stress variation according to the change of the design variables such as the material and shape of the package is calculated and the possibility of delamination is considered. For the model fully delaminated between the chip and diepad, J-integrals are calculated for the various design variables and the fracture integrity is discussed. From the results, optimal design values of variables to prevent the delamination and fracture of IC package are obtained. In this study, FDM program to obtain the vapor pressure from the content of moisture absorbed into the package is developed.

Fracture Analysis of Electronic IC Package in Reflow Soldering Process

  • Yang, Ji-Hyuck;Lee, Kang-Yong;Lee, Taek sung;Zhao, She-Xu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.357-369
    • /
    • 2004
  • The purposes of the paper are to analyze the fracture phenomenon by delamination and cracking when the encapsulant of plastic IC package with polyimide coating shows viscoelastic behavior under hygrothermal loading in the IR soldering process and to suggest more reliable design conditions by the approaches of stress analysis and fracture mechanics. The model is the plastic SOJ package with the polyimide coating surrounding chip and dimpled diepad. On the package without cracks, the optimum position and thickness of polyimide coating to decrease the maximum differences of strains at the bonding surfaces of parts of the package are studied. For the model delaminated fully between the chip and the dimpled diepad, C(t)-integral values are calculated for the various design variables. Finally, the optimal values of design variables to depress the delamination and crack growth in the plastic IC package are obtained.

A Study on the Effect of Temperature on the Elastic-Plastic Fracture Toughness $J_{IC}$ of Materials (I) - A Comparative Study of $J_{IC}$ Test Methods Recommended by ASTM and JSME - (재료의 탄소성 파괴인성치 $J_{IC}$의 온도 의존성에 관한 연구 I - AST과 JSME의 $J_{IC}$ 시험법에 관한 비교연구 -)

  • 석창성;최용식;양원호;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 1989
  • Elastic-plastic fracture toughness J$_{IC}$ can be used as an effective design criterion in elastic plastic fracture mechanics. In the J$_{IC}$ test methods approved by ASTM and JSME, there are discrepancies such as the definition of J$_{IC}$, the slope of the blunting line, curve fitting method and the measurement of crack extension etc. The objective of this paper is to evaluate the effect of these discrepancies on the determination of J$_{IC}$ values. Fracture toughness tests were performed on A516, SA508 and SCM415 steels, and test results were analyzed according to ASTM E 813-81, ASTM E 813-87 and JSME S 001-1981. Results showed significant differences depending on the analysis methods. Therefore, a conversion equation between two ASTM methods was proposed, and the conversion error was within acceptable range(less then 8.5%)en 8.5%)

Design and Manufacturing of Narrow-pitched IC Sockets (초소형 IC 소켓 설계 및 제조 기술)

  • Yoon, Seon-Jhin;Kim, Jong-Mi;Kwon, Oh-Keun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • The design and manufacturing tehcnology of IC sockets beyond 0.3mm pitch were presented. We compared the developed IC socket with the conventional one especially on the core metal-insulation part. Advanced machining techniques were employed to provide high precision. Our wire electrodischarge machining and high speed machining centers were able to maintain the micro-scale precision. We performed an injection molding analysis using a commercial analysis tool to predict the performance of the developed IC socket. We found that the solidification of the plastic resin and the high level of the clamping force are responsible for the defects such as incomplete filling and short shot. From these results, we modified the IC socket and successfully remove the defects. We were also able to find out that the new design socket needs less maintenance cost.

Analysis of Mechanical Behavior and Fracture Toughness $K_{IC}$ on EGW Welded Joints for High Strength EH36-TMCP Ultra Thick Plate (고강도 극후판 EH36-TMCP강 EGW용접부의 역학적 거동 및 파괴인성 $K_{IC}$에 관한 해석)

  • Bang, Hee-Seon;Bang, Han-Sur;Joo, Sung-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.565-572
    • /
    • 2009
  • This work intends to establish the reliability and fracture toughness $K_{IC}$ criterion of welded joints by EGW for high strength EH36-TMCP ultra thick plate. For this, firstly thermo elasto-plastic analysis has been carried out on two pass X-groove butt joint model to clarify the thermal and mechanical behaviour(residual stress, plastic strain, magnitude of stress and their distribution and production mechanism). Moreover, to establish fracture criterion, analysis of fracture toughness $K_{IC}$ has been performed under the notch machined and residual stress with the load condition on EGW welded joints. A quantitative fracture criterion for EGW welded joints is suggested by using $K_{IC}$.

Fracture Resistance Characteristics of SA516-Gr.70 Steel Plate for RCS Piping Elbow and Support Skirt (원자로 냉각재배관 엘보우 및 서포트 스컷트용)

  • Son, Jong-Dong;Lim, Man-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.49-54
    • /
    • 2006
  • The evaluation of elastic-plastic fracture characteristic was investigated in ferrite steel SA 516- Gr70 used for reactor coolant piping elbow and support skirt of pressure vessels. This paper describes the effect of temperature on J-R curve characteristic of this material. The elastic-plastic fracture mechanics parameter J is obtained with unloading compliance method. The test method were analyzed according to ASTM E 813-89 and E 1152-89. Unloading compliance $J_{IC}$ tests were performed on 1 CT specimens at varied temperatures from $25^{\circ}C$ to about $400^{\circ}C$ using a high temperature extensometer. At all temperature, valid $J_{IC}$ measurements could be made and $J_{IC}$ decreased with increasing temperature. SEM fractography schematically illustrates microvoid initiation, growth and coalescence at the tip of a preexisting crack.