• Title/Summary/Keyword: Plasma modeling

Search Result 215, Processing Time 0.03 seconds

COMPUTATIONAL MODELING AND SIMULATION OF METAL PLASMA GENERATION BETWEEN CYLINDRICAL ELECTRODES USING PULSED POWER (펄스파워를 이용한 실린더형 전극간 금속 플라즈마 생성현상의 전산유동해석)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.68-74
    • /
    • 2014
  • This computational study features the transient compressible and inviscid flow analysis on a metallic plasma discharge from the opposing composite electrodes which is subjected to pulsed electric power. The computations have been performed using the flux corrected transport algorithm on the axisymmetric two-dimensional domain of electrode gap and outer space along with the calculation of plasma compositions and thermophysical properties such as plasma electrical conductivity. The mass ablation from aluminum electrode surfaces are modeled with radiative flux from plasma column experiencing intense Joule heating. The computational results shows the highly ionized and highly under-expanded supersonic plasma discharge with strong shock structure of Mach disk and blast wave propagation, which is very similar to muzzle blast or axial plasma jet flows. Also, the geometrical effects of composite electrodes are investigated to compare the amount of mass ablation and penetration depth of plasma discharge.

Numerical Investigation of Scattering from a Surface Dielectric Barrier Discharge Actuator under Atmospheric Pressure

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • Surface dielectric barrier discharge (SDBD), which is widely used to control turbulence in aerodynamics, has a significant effect on the radar cross-section (RCS). A four-way linearly synthesized SDBD air plasma actuator is designed to bolster the plasma effects on electromagnetic waves. The diffraction angle is calculated to predict the RCS because of the periodic structure of staggered electrodes. The simplified plasma modeling is utilized to calculate the inhomogeneous surface plasma distribution. Monostatic RCS shows the diffraction in the plane perpendicular to the electrode array and the notable distortion by plasma. In comparison, the overall pattern is maintained in the parallel plane with minor plasma effects. The trends also appear in the bistatic RCS, which has a significant difference in the observation plane perpendicular to the electrodes. The peaks by Bragg's diffraction are shown, and the RCS is reduced by 10 dB in a certain range by the plasma effect. The diffraction caused by the actuator and the inhomogeneous air plasma should be considered in designing an SDBD actuator for a wide range of application.

Modeling of Process Plasma Using a Radial Basis Function Network: A Cases Study

  • Kim, Byungwhan;Sungjin Rark
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-273
    • /
    • 2000
  • Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.

  • PDF

Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas (저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션)

  • Shon, Chae-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.601-605
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.

A Plasma-Etching Process Modeling Via a Polynomial Neural Network

  • Kim, Dong-Won;Kim, Byung-Whan;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.297-306
    • /
    • 2004
  • A plasma is a collection of charged particles and on average is electrically neutral. In fabricating integrated circuits, plasma etching is a key means to transfer a photoresist pattern into an underlayer material. To construct a predictive model of plasma-etching processes, a polynomial neural network (PNN) is applied. This process was characterized by a full factorial experiment, and two attributes modeled are its etch rate and DC bias. According to the number of input variables and type of polynomials to each node, the prediction performance of the PNN was optimized. The various performances of the PNN in diverse environments were compared to three types of statistical regression models and the adaptive network fuzzy inference system (ANFIS). As the demonstrated high-prediction ability in the simulation results shows, the PNN is efficient and much more accurate from the point of view of approximation and prediction abilities.

  • PDF

Investigation on the Flow Field Characteristics of a Highly Underexpanded Pulsed Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1691-1698
    • /
    • 2001
  • In recent years, significant progress has been made in modeling turbulence behavior in plasma and its effect on transport. It has also been made in diagnostics for turbulence measurement; however, there is still a large gap between theoretical model and experimental measurements. Visualization of turbulence can improve the connection to theory and validation of the theoretical model. One method to visualize the flow structures in plasma is a laser Schlieren imaging technique. We have recently applied this technique and investigated the characteristics of a highly underexpanded pulsed plasma jet originating from an electrothermal capillary source. Measurements include temporally resolved laser Schlieren imaging of a precursor blast wave. Analysis on the trajectory of the precursor blast wave shows that it does not follow the scaling expected for a strong shock resulting from the instantaneous deposition of energy at a point. However, the shock velocity does scale as the square root of the deposited energy, in accordance with the point deposition approximation.

  • PDF

Numerical Modeling of Deposition Uniformity in ICP-CVD System (수치모델을 이용한 ICP-CVD 장치의 증착 균일도 해석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.279-286
    • /
    • 2008
  • Numerical analysis is done to investigate which would be the most influencing process parameter in determining the uniformity of deposition thickness in TiN ICP-CVD(inductively coupled plasma chemical vapor deposition). Two configurations of ICP antenna are modeled; side and top planar. Side and top gas inlets are considered with each ICP antenna geometries. Precursor for TiN deposition was TDMAT(Tetrakis Diethyl Methyl Amido Titanium). Two step volume dissociation of TDMAT is used and absorption, desorption and deposition surface reactions are included. Most influencing factors are H and N concentration dissociated by electron impact collisions in plasma volume which depends on the relative positions of gas inlet and ICP antenna generated hot plasma region. Low surface recombination of N shows hollow type concentration, but H gives a bell type distribution. Film thickness at substrate edges is sensitive to gas flow rate and at high pressures getting more dependent on flow characteristics.

Influence of $SF_6$ Gas On An Arc Plasma In UHV Circuit Breaker ($SF_6$ gas가 초고압 차단기 내에서 Arc Plasma에 미치는 영향)

  • Choi, Kyung-Chuel;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.278-282
    • /
    • 1987
  • Computational and theoritical investigations of an arc plasma have been made for the design of a circuit breaker. Modeling of an arc plasma used to be very involved and difficult because of the many variables and factors, In this paper, the dynamic behavior of an arc plasma is investigated by solving the MHD equations. Comparing an $SF_6$-blast arc with a non-blast arc, it has been found that the effect of gas-blast has a great influence on density rather than temperature.

  • PDF

Sensitivity Analysis of Plasma Charge-up Monitoring Sensor

  • Lee Sung Joon;Soh Dea-Wha;Hong Sang Jeen
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.187-190
    • /
    • 2005
  • High aspect ratio via-hole etching process has emerged as one of the most crucial means to increase component density for ULSI devices. Because of charge accumulation in via-hole, this sophisticated and important process still hold several problems, such as etching stop and loading effects during fabrication of integrated circuits. Indeed, the concern actually depends on accumulated charge. For monitoring accumulated charge during plasma etching process, charge-up monitoring sensor was fabricated and tested under some plasma conditions. This paper presents a neural network-based technique for analyzing and modeling several electrical performance of plasma charge-up monitoring sensor.

Sensitivity Analysis of Plasma Charge-up Monitoring Sensor Using Neural Networks

  • Lee, Sung-Joon;Kim, Sun-Phil;Soh, Dae-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.303-306
    • /
    • 2005
  • High aspect ration via-hole etching process has emerged as one of the most crucial means to increase component density for ULSI devices. Because of charge accumulation in via hole, this sophisticated and important process still hold several problems, such as etching stop, loading effects during fabrication of integrated circuits. Indeed, the concern actually depends on accumulated charge. For monitoring accumulated charge during plasma etching process, charge-up monitoring sensor was fabricated and tested under some plasma conditions. This paper presents a neural network-based technique for analyzing and modeling several electrical performance of plasma charge-up monitoring sensor.

  • PDF