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A plasma is a collection of charged particles and on 
average is electrically neutral. In fabricating integrated 
circuits, plasma etching is a key means to transfer a 
photoresist pattern into an underlayer material. To 
construct a predictive model of plasma-etching processes, 
a polynomial neural network (PNN) is applied. This 
process was characterized by a full factorial experiment, 
and two attributes modeled are its etch rate and DC bias. 
According to the number of input variables and type of 
polynomials to each node, the prediction performance of 
the PNN was optimized. The various performances of the 
PNN in diverse environments were compared to three 
types of statistical regression models and the adaptive 
network fuzzy inference system (ANFIS). As the 
demonstrated high-prediction ability in the simulation 
results shows, the PNN is efficient and much more 
accurate from the point of view of approximation and 
prediction abilities. 
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I. Introduction 

A plasma is a collection of charged particles and on 
average is electrically neutral. In fabricating integrated 
circuits, plasma etching is a key means of forming fine 
patterns for manufacturing integrated circuits. Owing to 
complex chemical reactions between the plasma variables, 
ions and radicals, and the material surfaces, it has been 
extremely difficult to model plasma etching. Thus, there have 
been many reports on constructing predictive etch models 
using intelligent systems such as a backpropagation neural 
network [1]-[4] and fuzzy system [5]. In this paper, a 
polynomial neural network (PNN) [6], [7] is applied to 
model a plasma etching. The PNN employed here is a 
GMDH-type algorithm [8], which is one of the useful 
approximator techniques. The PNN has an architecture 
similar to feedforward neural networks whose neurons are 
replaced by polynomial nodes. The output of each node in 
the PNN is obtained using several types of polynomials such 
as a linear, quadratic, and modified quadratic of input 
variables. These polynomials are called partial descriptions 
(PDs). The PNN has fewer nodes than a backpropagation 
neural network, but the nodes are more flexible. The PNN 
model is compared to the three types of statistical regression 
models and the adaptive network fuzzy inference system 
(ANFIS). The experimental data examined here were 
obtained from the etching of silicon carbide (SiC) material. 
The process was characterized by a 25 factorial experiment 
[9]. The process input parameters that were varied in the 
design include source power, bias power, pressure, O2 
fraction, and a gap between the coil antenna and chuck 
holder. The process outputs modeled are etch rate and 
electrical DC bias. 
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II. Experimental Data 

We collected the experimental data from SiC etching in a 
C2F6/O2 plasma. We isolated the plasma generated inside a 
chamber from the planar-coupled coils using a dielectric window. 
A multipolar magnet was additionally equipped outside the 
chamber to achieve a high plasma density while maintaining high 
spatial uniformity. The cylindrical chamber has a radius of 80 mm 
and a height of 40 mm. Prior to the initiation of gas flows, the 
chamber was evacuated using a turbo (TUROVAC 3430MC) and 
rotary (Edward High Vacuum E2M40) pump, thereby 
maintaining a base pressure of about 10-6 Torr. We precisely 
controlled the gas flow rates through mass flow controllers and 
controlled the process pressure, measured by the baratron, pinary, 
and penning gauges, using the throttle valve. The coolant was fed 
to a chuck holder to minimize damage to the equipment from a 
surge in the temperature while the system was running. We 
fabricated test patterns on n-type, 2-inch, 4H-SiC wafers with an 
epi doping density of 1.0E15 ND-NA/cm3. Using a mask with a 
line width of 3 µm, we patterned a negative photoresist on the epi-
layered SiC. The patterns were then etched in C2F6/O2 plasma. The 
DC bias was measured during the process run. After removing the 
photoresist through the lift-off process, another vertical etch rate 
was measured using scanning electron microscopy. Using a 25 
factorial experiment [9], the etch process was characterized. The 
process parameters that were varied in the design include the 
source power, bias power, pressure, O2 fraction, and gap. Their 
experimental ranges are shown in Table 1. 
 

Table 1. Experimental parameters and ranges. 

Parameters Range Unit 

Source power 600–900 Watts 

Bias power 50–150 Watts 

Pressure 4–16 mTorr 

O2 fraction 0–80 % 

Gap 6–12 cm 

 
 

The total flow rates of both C2F6 and O2 were set to 30 sccm. 
The data for the etch rate consisted of 32 and 15 experiments 
for training and testing networks, respectively. Other DC bias 
data were composed of 34 and 17 experiments for training and 
testing models, respectively. 

III. Polynomial Neural Network 

1. Polynomial Neural Network Architecture and Its Algorithm 

Since the PNN is applied to plasma-etched data, its 
fundamentals are briefly explained. Each polynomial in the 

PNN algorithm represents a PD, and the best model is 
determined by selecting the most significant input variables 
and polynomial order. The design procedures are detailed in [6], 
[7]. Here, the architecture and algorithm of the PNN is briefly 
explained. The PNN is operated in the following steps. 

Step 1. We define the input variables such as Niii xxx L,, 21  
related to output variable ,iy  where N and i are the number of 
the entire input variables and input-output data sets, respectively. 

Step 2. The input-output data sets are separated into training 
)( trn  data sets and testing )( ten  data sets. Obviously, we 

have .tetr nnn +=  The training data set is used to construct a 
PNN model. And the testing data set is used to evaluate the 
constructed PNN model. 

Step 3. The structure of the PNN is strongly dependent on 
the number of input variables and the order of PD in each layer. 
Two kinds of PNN structures, namely, the basic PNN structure 
and the modified PNN structure, can be available. Each of 
them comes with two cases. 

(a) Basic PNN structure – The number of input variables of 
the PDs is the same in every layer. 

(b) Modified PNN structure – The number of input variables 
of the PDs varies from layer to layer. 

    Case 1. The polynomial order of the PDs is the same in 
each layer of the network. 

    Case 2. The polynomial order of the PDs in the 2nd or 
higher layer is different from the one in the 1st layer. 

Step 4. We determine arbitrarily the number of input 
variables and type of polynomial in the PDs. The polynomials 
differ according to the number of input variables and the 
polynomial order. Several types of polynomials are shown in 
Table 2. Because the outputs of the nodes of the preceding 
layer become the input variables for the current layer, the total 
number of PDs located at the current layer is determined by the 
number of selected input variables (r) from the nodes of the 
preceding layer. The total number of PDs in the current layer is 
equal to the combination, NCr , that is ,

)!(!
!

rNr
N

−
 where N is 

the number of nodes in the preceding layer. 
 

Table 2. Different types of the polynomial in PDs. 

        No. of inputs
Order of 
the polynomial 

1 2 3 

1 (Type 1) Linear Bilinear Trilinear 

2 (Type 2) Quadratic Biquadratic Triquadratic

2 (Type 3) Modified 
quadratic 

Modified 
biquadratic 

Modified 
triquadratic
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For an example, the specific forms of a PD in the case of two 
inputs are given as 

• Bilinear = 22110 xcxcc ++                      (1) 

• Biquadratic = 215
2
24

2
1322110 xxcxcxcxcxcc +++++  (2) 

• Modified biquadratic = ,21322110 xxcxcxcc +++     (3) 

where ci is the regression coefficients. 

Step 5. The vector of the coefficients of the PDs is 
determined using a standard mean squared error by minimizing 
the following index: 

∑
= −

=−=
trn

i
kii

tr
k rNr

Nkzy
n

E
1

2 ,
)!(!

!,,2,1,)(1
L    (4) 

where zki denotes the output of the k-th node with respect to the 
i-th data, and ntr is the number of training data subsets. 

This step is completed repeatedly for all the nodes in the 
current layer. 

Step 6. The predictive capability of each PD is evaluated by 
a performance index using the testing data set. We then choose 
w PDs among N Cr PDs in due order from the best predictive 
capability (the lowest value of the performance index). Here, 
w (30) is the pre-defined number of PDs that must be preserved 
to the next layer. The outputs of the chosen PDs serve as inputs 
to the next layer. 

Step 7. The PNN algorithm terminates when the number of 
layers predetermined by the designer is reached. Here, the 
number of total layers was limited to 5. 

Step 8. If the stopping criterion is not satisfied, the next layer 
is constructed by repeating steps 4 through 8. 

Figure 1 shows a PNN architecture. In the figure, four input 
variables ),,,( 41 xx L three layers, and a PD processing 
example are considered. zj-1

i indicates the output of the i-th 
node in the (j–1)th layer, which is employed as a new input of 
the j-th layer. The black nodes have influence on the best node 
(output node), and these networks represent the ultimate PNN 
model. Meanwhile, the solid line nodes have no influence over 
the output node. In addition, owing to poor performance, the 
dotted line nodes are excluded when choosing the PDs with the 
best predictive performance in the corresponding layer. 
Therefore, the solid line nodes and dotted line nodes should not 
be present in the final PNN model. 

2. Comparison of Neural Network and PNN 

Neural networks (NNs) have been widely used for modeling 
nonlinear systems. The approximation capability of NNs also 
has been investigated by many researchers. NNs provide an 

 

Fig. 1. Overall architecture of the PNN. 

PD

PD

PD

PD

PD

PD

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

Partial Description Processing (PD) 

zj-1
p, zj-1

q 

Selected inputs: (j-1)th layer order 

Type 2

c0+c1zj-1
p+c2zj-1

q+c3(zj-1
p)2+c4(zj-1

q)2+c5zj-1
p zj-1

q

PD: j-th layer 

zi
zj-1

p

zj-1
q

z3
1

z3
2

z3
3 

(Best node)
y

z3
4

z3
5

z2
1 

z2
2 

z2
3 

z2
4 

z2
5 

z1
1

z1
2

z1
3

z1
4

z1
5

x1

x2

x3

x4

^

 
 
excellent flexibility in mapping complex ‘input-output’ 
dependencies. The use of NNs has, however, some 
disadvantages compared with the PNN. In particular, the 
equations built during NNs training are opaque, and NNs do not 
distinguish inputs by their significance, leaving the responsibility 
to select significant inputs to a user. Also, the number of nodes 
and layers of the NNs are fixed by the user, and while there are 
many factors contributing to the flexibility of the NNs such as 
training tolerance, hidden neurons, initial weight distribution, and 
two gradients of activation functions, the factors contributing to 
the flexibility of the PNN are developed through the modeling 
process. The training of NNs is a kind of statistical estimation 
often using algorithms that are slow. If noise is considerable in a 
data sample, the generated models tend to be overfitted in order 
to achieve good results, whereas the PNN model creates an 
optimal complex model systematically and autonomously. The 
optimal complex model is a model that optimally balances 
model quality on a given data set and its generalization power on 
new, not previously seen, data with respect to the data’s noise 
level and the task of modeling (prediction). It thus solves the 
basic problems of experimental systems analysis, systematically 
avoiding “overfitted” models based on the data’s information 
only. This makes the PNN method a most automated, fast, and 
very efficient supplement and alternative to the predictions of 
plasma etching methods. 

IV. Simulation Results 

Using the PNN, statistical regression technique, and ANFIS, 
predictive models are constructed and compared. The accuracy 
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measured by the training and testing data was quantified by the 
root mean-squared error. 

1. Etch Rate 

The etch rate is modeled by using the PNN. The data for the 
etch rate was divided into two sets of training and test data. The 
training data consisted of 32 patterns, 30 from the experimental 
design and two replications for the center point. Actually, two 
of the expected 32 patterns from the experimental design 
employed were unable to be collected due to unacceptable 
plasma conditions. The test data consisted of 15 patterns not 
pertaining to the training data. As stated earlier, the PNN 
architecture consists of five layers. Each PD in a layer is 
defined by two training factors, the number of inputs and the 
polynomial type. Depending on their combinations, the PNN 
prediction is expected to vary considerably. The input number 
for the first and other four layers varies from 1 to 4. Similarly, 
the polynomial type varies from 1 to 3. The results are 
summarized in the figures and tables. Figures 2 through 4 show 
 

 

Fig. 2. PI and EPI behavior with respect to layers (Type 1). 
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Fig. 3. PI and EPI behavior with respect to layers (Type 2). 
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the performances of the basic PNN model when the 
polynomial type varies from 1 to 3 and the number of inputs 
for the first and other four layers are either 2, 3, or 4. In the 
 

 

Fig. 4. PI and EPI behavior with respect to layers (Type 3). 
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Fig. 5. PI and EPI behavior with respect to layers and polynomial 
type (Type 1→2). 
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Fig. 6. PI and EPI behavior with respect to layers and polynomial 
type (Type 3→2). 
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figures, PI denotes the performance index of the model for the 
training data, while EPI describes the performance of the 
model for the testing data. 

Figures 5 and 6 show the performances of the basic PNN 
model when the polynomial type for the first and other four 
layers varies from 1 to 2 and 3 to 2, respectively. 

Figures 7, 8, and 9 show the performances of the modified 
PNN model when the number of inputs for the first and other 
four layers varies from 2 to 4, 3 to 2, and 3 to 4, respectively. 

Figures 10 and 11 show the performances of the modified 
PNN when the number of inputs for the first and other four 
layers varies from 2 to 4, 3 to 2, and 3 to 4, and the polynomial 
types vary from 1 to 2, and 3 to 2. 

In the case of the basic PNN, the values PI=6.3183 and 
EPI=12.4130 in Fig. 5 are obtained by the use of three inputs 
for every node in all the layers, with Type 1 in the first layer 
and Type 2 in the other four layers. On the other hand, the 
results of the modified PNN, PI=3.1607 and EPI=6.9059 in 
 

 

Fig. 7. PI and EPI behavior with respect to layers and inputs (Type 1).
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Fig. 8. PI and EPI behavior with respect to layers and inputs (Type 2).
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Fig. 11, are obtained by the use of three input variables with 
Type 3 for every node in the first layer and four input variables 
with Type 2 for every node from the second layer to the fifth 
 

 

Fig. 9. PI and EPI behavior with respect to layers and inputs (Type 3).
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Fig. 10. PI and EPI behavior with respect to layers, inputs, and
polynomial type (Type 1→2). 
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Fig. 11. PI and EPI behavior with respect to layers, inputs, and
polynomial type (Type 3→2). 
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Fig. 12. Identification performance of PNN. 
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layer. To ascertain the model performance visually, model 
predictions are compared with the actual measurements for all 
training and test data as illustrated in Fig. 12(a). This is also 
supported by the residual errors shown in Fig. 12(b). As 
represented in Fig. 12, the PNN model was well trained and 
attained a high predictive ability. 

For the comparison with statistical regression models, three 
types of regression models were constructed. Their forms were 
obtained as the following. 

Type 1: 

54321 4916.520156.042708.038199.012108.0561.11 xxxxxy −++++−= (5) 
Type 2: 

54534352

423251

413121
2
5

2
4

2
3

2
2

2
1

54321

012109.025955.00093424.0030052.0
00022656.00052604.00012326.0

00002343.0008316.000010938.0353.4

013099.0026861.00033633.000040773.0

053.782095.16828.2060522.062593.019.501

xxxxxxxx
xxxxxx

xxxxxxx

xxxx

xxxxxy

−−+−
+−+

+++−

−−+−

++−−+−=

 

(6) 

Type 3: 

54534352

423251

4131215

4321

012109.025955.00074608.0030052.0
00022656.00052604.0000229126.0

00002343.0008316.000016959.060282.0
18047.01448.36031.0020361.04259.5

xxxxxxxx
xxxxxx

xxxxxxx
xxxxy

−−+−
+−+

++++
+−++=

 

     (7) 

The corresponding PI and EPI are contained in Table 3. In 
addition, the ANFIS model was constructed with variations in 
the type of membership function. The corresponding PI and 
EPI are also contained in Table 3. 
 

Table 3. Performance index values of some identification models.

Performance index 
Model 

PI EPI 

Type 1 20.414 56.476 

Type 2 9.3755 19.028 Regression model 

Type 3 17.647 56.164 

Triangular 0.3750 27.6330 
ANFIS [10] 

Gaussian 0.3751 27.2463 

Basic 6.3183 12.4130 
Our model 

Modified 3.1607 6.9059 

  

2. DC-Bias 

As in the case of the etch rate, the DC bias was modeled by 
using the PNN and its identification performance compared with 
three types of statistical regression models and the ANFIS. The 
results are contained in Table 4. For a comparison with statistical 
regression models, three types of regression models were also 
constructed. Their forms were obtained as the following. 

Type 1: 

54321 49.1614453.08906.28906.210187.0423.43 xxxxxy +−++−=  (8) 
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Again, a series of comprehensive experiments of the PNN 
was conducted, and the results are summarized in the same 
way as before. 
 

 

Fig. 13. PI and EPI behavior with respect to layers (Type 1). 
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Fig. 14. PI and EPI behavior with respect to layers (Type 2). 
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Fig. 15. PI and EPI behavior with respect to layers (Type 3). 
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Fig. 16. PI and EPI behavior with respect to layers and 
polynomial type (Type 1→2). 
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Fig. 17. PI and EPI behavior with respect to layers and 
polynomial type (Type 3→2). 
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In the case of the basic PNN, PI=8.7797 and EPI=7.6843 
in Fig. 17 are obtained by the use of three inputs to every 
node in each layer with Type 3 in the first layer and Type 2 in 
the other four layers. On the other hand, the results of the 
modified PNN, PI=6.6168 and EPI=5.5893 in Fig. 22, are 
obtained by the use of two input variables with Type 3 to 
every node in the first layer and four input variables with 
Type 2 to every node from the second layer to the fifth layer. 
Figure 23 shows the comparisons with actual data and the 
lowest value of the basic and modified PNNs. Figure 23 also 
shows residual errors. 

Table 4 provides a comparison of the PNN with the 
regression model and ANFIS. It is obvious that the PNN model 
outperforms the other models both in terms of accuracy and 
higher generalization capabilities. Owing to the complex and 
nonlinear chemical reactions between the experimental 
parameters and DC-bias, it has been difficult to model plasma 
etching. These complex characteristics of the DC-bias can be 
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Fig. 18. PI and EPI behavior with respect to layers and inputs
(Type 1). 
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Fig. 19. PI and EPI behavior with respect to layers and inputs
(Type 2). 
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Fig. 20. PI and EPI behavior with respect to layers and inputs
(Type 3). 
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Fig. 21. PI and EPI behavior with respect to layers, inputs, and 
polynomial type (Type 1→2). 
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Fig. 22. PI and EPI behavior with respect to layers, inputs, and 
polynomial type (Type 3→2). 
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seen from Fig. 23. Because of these characteristics and a lesser 
number of testing data pairs, the EPIs are better than PIs. 

V. Conclusion and Future Work 

In this paper, a PNN was constructed and applied to model a 
plasma etching. The performance of the PNN was compared to 
those for the three statistical regression models and ANFIS. 
The etching process was characterized with a 25 factorial 
experiment. The PNN was evaluated with variations in the 
number of inputs and in the polynomial type. Compared to the 
optimized regression models and ANFIS, the PNN model 
demonstrated a considerably improved prediction in modeling 
either the etch rate or DC bias. This indicates that the PNN is 
an effective means to construct a predictive model for poorly 
defined complex systems characterized by the limited data set. 
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Fig. 23. Identification performance of PNN. 
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Table 4. Performance index values of some identification models. 

Performance index 
Model 

PI EPI 

Type 1 27.427 39.57 

Type 2 15.154 94.927 Regression model 

Type 3 19.371 39.57 

Triangular 0.8495 33.3252 
ANFIS [10] 

Gaussian 0.8500 32.5949 

Basic 8.7797 7.6843 
Our model 

Modified 6.6168 5.5893 

 

 
In this paper, we used testing data for the selection of the most 
predictive PDs. This means, somewhat, that the testing data is 
used in the course of PNN architecture building. Therefore a 
genuine prediction ability of the PNN model is not a guarantee. 
To get a more valid generalization ability, new selection criteria 

and data separating such as training, testing, and validation, 
from a methodological viewpoint, are needed. 
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Appendix 
This appendix summarizes the architecture of the ANFIS. 

For simplicity, we assume the fuzzy inference system under 
consideration has two inputs, x1 and x2, and one output, z. 
Suppose that the rule base contains two fuzzy if-then rules. 

Rule 1: If x1 is A1 and x2 is B1, then f1=p1x1+q1x2+r1 
Rule 2: If x1 is A2 and x2 is B2, then f2=p2x1+q2x2+r2 

The ANFIS architecture is shown in Fig. A1, illustrating the 
fuzzy reasoning mechanism. We describe the node function in 
each layer of the ANFIS as follows: (Note that j

iO  denotes 
the output of the i-th node in layer j) 

Layer 1: Each node in this layer generates membership 
grades of a linguistic label. For instance, the node function of 
the i-th node might be 
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Fig. A1. ANFIS architecture. 
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where x is the input to node i; Ai is the linguistic label (small, 
large, etc) associated with this node; and {a, b, c} is the 
parameter set that changes the shape of the bell-shaped 
membership function. The parameters in this layer are referred 
to as the premise parameters. 

Layer 2: Each node in this layer calculates the firing strength 
of each rule via multiplication. 

),()( 21
2 xxwO

ii BAii µµ ×==   i=1, 2 

Layer 3: The i-th node of this layer calculates the ratio of the 
i-th rule’s strength to the sum of all of the rules’ firing strength. 
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Layer 4: Node i in this layer has the following node function, 
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4

iiiiiii rxqxpwfwO ++==  

where wi is the output of layer 3 and {p, q, r} is the parameter 
set. The parameters in this layer will be referred to as the 
consequent parameters. 

Layer 5: The single node in this layer computes the overall 
output as the summation of all incoming signals 
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