• Title/Summary/Keyword: Plasma current

Search Result 1,282, Processing Time 0.026 seconds

Determining plasma boundary in Alvand-U tokamak

  • Yahya Sadeghi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3485-3492
    • /
    • 2023
  • One of the major topic of tokamak research is the determination of the magnetic profile due to magnetic coil fields and plasma current by mean of data from magnetic probes. The most practical approach is to use the current filament method, which models the plasma column with multiple current carrying filaments and the total current of these filaments is equal to the plasma current. Determining the plasma boundary in Alvand-U tokamak is the main purpose of this paper. In order to determine the magnetic field profile and plasma boundary, information concerning the magnetic coils, their position, and current is required in the computing code. Then, the plasma shape is determined and finally the plasma boundary is extracted by the code. In the conducted research, we discuss how to determine the plasma boundary and the performance of the computing code for extraction of the plasma boundary. The developed algorithm shows to be effective by running it in the regular pc machine with characteristics of Intel (R) core (TM) i3-10100 CPU @3.60 GHz and 8.00 GB of RAM. Finally, we present results of a test run for computing code using a typical experimental pulse.

A Preliminary Research on Optical In-Situ Monitoring of RF Plasma Induced Ion Current Using Optical Plasma Monitoring System (OPMS)

  • Kim, Hye-Jeong;Lee, Jun-Yong;Chun, Sang-Hyun;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.523-523
    • /
    • 2012
  • As the wafer geometric requirements continuously complicated and minutes in tens of nanometers, the expectation of real-time add-on sensors for in-situ plasma process monitoring is rapidly increasing. Various industry applications, utilizing plasma impedance monitor (PIM) and optical emission spectroscopy (OES), on etch end point detection, etch chemistry investigation, health monitoring, fault detection and classification, and advanced process control are good examples. However, process monitoring in semiconductor manufacturing industry requires non-invasiveness. The hypothesis behind the optical monitoring of plasma induced ion current is for the monitoring of plasma induced charging damage in non-invasive optical way. In plasma dielectric via etching, the bombardment of reactive ions on exposed conductor patterns may induce electrical current. Induced electrical charge can further flow down to device level, and accumulated charges in the consecutive plasma processes during back-end metallization can create plasma induced charging damage to shift the threshold voltage of device. As a preliminary research for the hypothesis, we performed two phases experiment to measure the plasma induced current in etch environmental condition. We fabricated electrical test circuits to convert induced current to flickering frequency of LED output, and the flickering frequency was measured by high speed optical plasma monitoring system (OPMS) in 10 kHz. Current-frequency calibration was done in offline by applying stepwise current increase while LED flickering was measured. Once the performance of the test circuits was evaluated, a metal pad for collecting ion bombardment during plasma etch condition was placed inside etch chamber, and the LED output frequency was measured in real-time. It was successful to acquire high speed optical emission data acquisition in 10 kHz. Offline measurement with the test circuitry was satisfactory, and we are continuously investigating the potential of real-time in-situ plasma induce current measurement via OPMS.

  • PDF

Influence of the Density Gradient on the Current of the Electrode Immersed in the Non-uniform Plasma (플라즈마 삽입전극의 전류에 미치는 밀도 구배의 영향)

  • Hwang, Hui-Dong;Gu, Chi-Wuk;Chung, Kyung-Jae;Choe, Jae-Myung;Kim, Gon-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.504-509
    • /
    • 2011
  • The conducting current of non-uniform plasma immersed electrode consists of ion current and secondary electron emission current caused by the impinging ion current. The ion current is determined by the ion dose passing through the sheath in front of electrode and the ion distribution in front of the electrode plays an important role in the secondary electron emission. The investigation of the distributed plasma and secondary electron effect on electrode ion current was carried out as the stainless steel electrode plugged with quartz tube was immersed in the inductively coupled Ar plasma using the antenna powered by 1 kw and the density profile was measured. After that, the negative voltage was applied by 1 kV~6 kV to measure the conduction current for the analysis of ion current.

Design and fabrication of an optimized Rogowski coil for plasma current sensing and the operation confidence of Alvand tokamak

  • Eydan, Anna;Shirani, Babak;Sadeghi, Yahya;Asgarian, Mohammad Ali;Noori, Ehsanollah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2535-2542
    • /
    • 2020
  • To understand the fundamental parameters of Alvand tokamak, A Rogowski coil with an active integrator was designed and constructed. Considering the characteristics of the Alvand tokamak, the structural and electrical parameters affecting the sensor function, were designed. Calibration was performed directly in the presence of plasma. The sensor has a high resistance against interference of external magnetic fields. Plasma current was measured in various experiments. Based on the plasma current profile and loop voltage signal, the time evolution of plasma discharge was investigated and plasma behavior was analyzed. Alvand tokamak discharge was divided into several regions that represents different physical phenomena in the plasma. During the plasma discharge time, plasma had significant changes and its characteristic was not uniform. To understand the plasma behavior in each of the phases, the Rogowski sensor should have sufficient time resolution. The Rogowski sensor with a frequency up to 15 kHz was appropriate for this purpose.

Reverse-bias Leakage Current Mechanisms in Cu/n-type Schottky Junction Using Oxygen Plasma Treatment

  • Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.113-117
    • /
    • 2016
  • Temperature dependent reverse-bias current-voltage (I-V) characteristics in Cu Schottky contacts to oxygen plasma treated n-InP were investigated. For untreated sample, current transport mechanisms at low and high temperatures were explained by thermionic emission (TE) and TE combined with barrier lowering, respectively. For plasma treated sample, experimental I-V data were explained by TE or TE combined with barrier lowering models at low and high temperatures. However, the current transport was explained by a thermionic field emission (TFE) model at intermediate temperatures. From X-ray photoemission spectroscopy (XPS) measurements, phosphorus vacancies (VP) were suggested to be generated after oxygen plasma treatment. VP possibly involves defects contributing to the current transport at intermediate temperatures. Therefore, minimizing the generation of these defects after oxygen plasma treatment is required to reduce the reverse-bias leakage current.

A Study on the Operating Characteristics of Commercial Frequency Plasma Jet Torch (상용 주파수 (60Hz) Plasma Jet Torch의 동작특성에 관한 연구)

  • 전춘생;정재웅
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1975
  • In order to develop the commercial frequency (60Hz) plasma torch of small capacity for material cutting, welding and other industrial heating, the A.C plasma jet generator of non-transfered type is made domestically and the electrode configurations of plasma torch are composed of two kinds of electrodes W-C and W-Cu, combined by thermal emission and field emission electrode materials. In this paper, the characteristics of input power, thermal efficiency, electrode consumption, the flame and forms of arc voltage and arc current for A.C plasma torch are investigated in relation to such variables as arc current, argon flow and magnetic field intensity to obtain the basic design data necessary to A.C plasma jet generator. The result are as follows; (1)The input power, thermal efficiency and electrode consumption are influenced greatly by argon flow, magnetic field intensity and nozzle materials. (2)A.C arc voltage and current are non-symmetrial, involving D.C Component. Due to this current of D.C Component, transformer core is saturated and a large abnormal current flows into the primary winding coil. In order to prevent this abnormal current flow, a condenser must be connected in series to the main discharge circuit. (3)The stability and sharpness of jet flame are improved more in the torch of W-C electrode configuration than in the torch of W-Cu electrode configuration.

  • PDF

Weldability Evaluation in Plasma-GMA Hybrid Welding for Al-5083 Using Analysis of Variance (AL5083 합금에 대한 Plasma-GMA 용접에서 분산분석을 이용한 공정변수의 특성 평가)

  • Jung, Jin Soo;Lee, Jong Jung;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • In this paper, I-butt welding with 6mm thickness using Plasma-GMA welding was carried out. And weld characteristics of the Al-5083 aluminium alloy for Plasma-GMA hybrid welding was evaluated. The orthogonal experimental design was used to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the weld bead geometry and tensile strength using the ANOVA(Analysis of Variation). Then we conducted evaluation of contribution for process parameters. ANOVA results show that bead dimensions are affected by wire feeding speed, welding voltage and welding speed and tensile strength is mainly affected by welding speed and plasma arc current. Tensile strength was decreased by rise in plasma welding current because GMA welding current was decreased by plasma arc.

Radial Speed of Current Sheath in Pulsed Discharge Plasma Device (펄스형 방전플라스마 장치에서 반경방향 Current Sheath의 속력)

  • Choi, Woon Sang;Jang, Jun Kyu
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.57-60
    • /
    • 2008
  • Purpose: The radial speed of plasma current sheath was measured at the plasma focus apparatus. Methods: The measurement was used to time-resolved spectroscopic method and Rogowski coils. Results: Radial current sheath speed was measured with $10^5$ cm/s at Helium and Argon pressure between 5 to 100 torr and discharging voltage of 15 kV. When the gas pressure was increased, the current sheath speeds were decreased. Conclusions: At the optimum condition of plasma focus apparatus, the radial speed is guessed $10^7$ cm/s as a results of the measurement of current sheath speed.

  • PDF

Current Source Type Pulse Generator with Improved Output Voltage Waveform for High Voltage Capacitively Coupled Plasma System (고전압 용량성 결합 플라즈마 시스템의 개선된 전압 파형 출력을 위한 펄스 전류 발생장치 회로)

  • Chae, Beomseok;Min, Juhwa;Suh, Yongsug;Kim, Hyunbae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 2019
  • This study proposes a current source-type pulse generator to improve output voltage and current waveforms under a capacitively coupled plasma (CCP) system. The proposed circuit comprises two parallel-connected current source-type converters. These converters can satisfy the required output waveforms of plasma processing. The parallel-connected converters operate without reverse current fault by applying a time-delay control technique. Conventional voltage source converters based on pulse power supply exhibit drawbacks in short-circuit current, and problems occur when they are applied to a CCP system. The proposed pulse power supply based on a current source converter fundamentally solves the short-circuit current problem. Therefore, this topology can improve the voltage and current accuracy of a CCP system.

The Improvement of the Off-Current Characteristics in the Short Channel a-Si:H TFTs

  • Bang, J.H.;Ahn, Y.K.;Ryu, W.S.;Kim, J.O.;Kang, Y.K.;Yang, J.Y.;Yang, M.S.;Kang, I.B.;Chung, I.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.867-869
    • /
    • 2008
  • We have investigated the effects of hydrogen plasma treatment by PECVD (Plasma Enhanced Chemical Vapor Deposition) in the back channel region, the method for reducing the off state leakage current which increases with the short channel length of a-Si:H TFTs. To improve the off current characteristics, we analyzed the hydrogen plasma treatment with various RF power and plasma treatment times of PECVD. As the result of hydrogen plasma treatment in the back channel region it was remarkably reduced the off current level of 2um channel length TFT.

  • PDF