Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.2.113

Reverse-bias Leakage Current Mechanisms in Cu/n-type Schottky Junction Using Oxygen Plasma Treatment  

Kim, Hogyoung (Department of Visual Optics and Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoultech))
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.2, 2016 , pp. 113-117 More about this Journal
Abstract
Temperature dependent reverse-bias current-voltage (I-V) characteristics in Cu Schottky contacts to oxygen plasma treated n-InP were investigated. For untreated sample, current transport mechanisms at low and high temperatures were explained by thermionic emission (TE) and TE combined with barrier lowering, respectively. For plasma treated sample, experimental I-V data were explained by TE or TE combined with barrier lowering models at low and high temperatures. However, the current transport was explained by a thermionic field emission (TFE) model at intermediate temperatures. From X-ray photoemission spectroscopy (XPS) measurements, phosphorus vacancies (VP) were suggested to be generated after oxygen plasma treatment. VP possibly involves defects contributing to the current transport at intermediate temperatures. Therefore, minimizing the generation of these defects after oxygen plasma treatment is required to reduce the reverse-bias leakage current.
Keywords
InP; Current transport mechanisms; Phosphorous vacancies;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Cova, A. Sing, A. medina, and R. Masut, Solid State Electron. 42, 477 (1997). [DOI: http://dx.doi.org/10.1016/S0038-1101(97)00250-5]   DOI
2 H. Zhao H, D. Shahrjerdi, F. Zhu, H. Kim, I. Ok, M. Zhang, J. Yum, S. Nanerjee, and J. Lee, Electrochem Solid State Lett. 11, H233 (2008). [DOI: http://dx.doi.org/10.1149/1.2938728]   DOI
3 Y. Wang, X. Yang, T. He, Y. Gao, H. Demir, X. Sun and H. Sun, Appl. Phys. Lett. 102, 021917 (2013). [DOI: http://dx.doi.org/10.1063/1.4776702]   DOI
4 A. Sing, K. Reinhardt, and W. Anderson, J. Appl. Phys. 68, 3475 (1990). [DOI: http://dx.doi.org/10.1063/1.346358]   DOI
5 K. Hattori, and Y. Torii, Solid State Electron. 34, 527 (1991). [DOI: http://dx.doi.org/ 10.1016/0038-1101(91)90157-T]   DOI
6 T. Sugino, H. Ito, and J. Shirafuji, Electron. Lett. 26, 1750 (1990). [DOI: http://dx.doi.org/10.1049/el:19901124]   DOI
7 M. Jeng, H. Wang, L. Chang, Y. Cheng, and S. Chou, J. Appl. Phys. 86, 6261 (1999). [DOI: http://dx.doi.org/10.1063/1.371682]   DOI
8 J. Dow, and R. Allen, J. Vac. Sci. Technol. 20, 659 (1982). [DOI: http://dx.doi.org/10.1116/1.571620]   DOI
9 H. Cetin, and E. Ayyildiz, Semicond. Sci. Technol. 20, 625 (2005). [DOI: http://dx.doi.org/10.1088/0268-1242/20/6/025]   DOI
10 L. Chou, K. Hsieh, D. Wohlert, and K. Cheng, J. Appl. Phys. 84, 6932 (1998). [DOI: http://dx.doi.org/10.1063/1.368993]   DOI
11 T. Huang, and R. Fang, Solid State Electron. 37, 1461 (1994). [DOI: http://dx.doi/org/10.1016/0038-1101(94)90152-X]   DOI
12 A. Astito, A. Foucaran, G. Bastide, and M. Rouzeyre, J. Appl. Phys. 70, 2584 (1991). [DOI: http://dx.doi.org/10.1063/1.349366]   DOI
13 M. Soylu, B. Abay, and Y. Onganer, J. Phys. Chem. Solids 71, 1398 (2010). [DOI: http://dx.doi.org/10.1016/j.jpcs.2010.07.003]   DOI
14 M. Reddy, V. Janardhanam, A. Kumar, V. Reddy, and P. Reddy, Phys. Status Solidi A 206, 250 (2009). [DOI: http://dx.doi.org/10.1002/pssa.200824268]   DOI
15 V. Janardhanam, A. Kumar, V. Reddy, and P. Reddy, Surf. Interface Anal. 41, 905 (2009). [DOI: http://dx.doi.org/10.1002/sia.3114]   DOI
16 E. Miller, E. Yu, P. Waltereit, and J. Speck, Appl. Phys. Lett. 84, 535 (2004). [DOI: http://dx.doi.org/10.1063/1.1644029]   DOI
17 K. Ueda, K. Kawamoto, and H. Asano, Diamond & Related Mater. 57, 28 (2015). [DOI: http://dx.doi.org/10.1016/j.diamond.2015.03.006]   DOI
18 S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
19 F. Padovani, and R. Stratton, Solid State Electron. 9, 695 (1966). [DOI: http://dx.doi.org/10.1016/0038-1101(66)90097-9]   DOI
20 N. Newman, W. Spicer, T. Kendelewicz, and I. Lindau, J. Vac. Sci. Technol. B 4, 931 (1986). [DOI: http://dx.doi.org/10.1116/1.583494]   DOI
21 V. Janardhanam, A. Kumar, V. Reddy, and P. Reddy, J. Mater. Sci.: Mater. Electron. 21, 285 (2010). [DOI: http:dx.doi.org/10.1007/s10854-009-9906-3]   DOI
22 E. Nicollian and J. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Wiley, New York, 1981).
23 C. Jeon, and J. Lee, Appl. Phys. Lett. 82, 4301 (2003). [DOI: http://dx.doi.org/10.1063/1.1583140]   DOI
24 A. Ahaitouf, E. Losson, and A. Bath, Solid State Electron. 44, 515 (2000). [DOI: http://dx.doi.org/10.1016/0038-1101(66)90097-9]   DOI
25 Y. Shan, A. Deng, C. Ling, S. Fung, and C. Ling, J. Appl. Phys. 91, 1998 (2002). [DOI: http://dx.doi.org/10.1063/1.1428796]   DOI